Photocatalytic CO2 conversion to CO

From ChemWiki
topic

Table of all the experiments that have a turnover number for CO greater than 100, sorted by catalyst and in descending order.

Table of all the experiments that have a turnover number for CO less than 100, sorted by catalyst.

Literature

[DSP19] Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4. Hunter Shirley, Xiaojun Su, Harshin Sanjanwala, Kallol Talukdar, Jonah W. Jurss, Jared H. Delcamp, Journal of the American Chemical Society 2019, Vol. 141, Pages 6617-6622. DOI2: 10.1021/jacs.9b00937
Publication: Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4
[DMS18] Dinuclear Metal Synergistic Catalysis Boosts Photochemical CO2‐to‐CO Conversion. Ting Ouyang, Hong‐Juan Wang, Hai‐Hua Huang, Jia‐Wei Wang, Song Guo, Wen‐Ju Liu, Di‐Chang Zhong, Tong‐Bu Lu, Angewandte Chemie International Edition 2018, Vol. 57, Pages 16480-16485. DOI2: 10.1002/anie.201811010
Publication: Dinuclear Metal Synergistic Catalysis Boosts Photochemical CO2-to-CO Conversion
[Hea18] Highly efficient and selective visible-light driven CO2-to-CO conversion by a Co-based cryptate in H2O/CH3CN solution. Dong-Cheng Liu, Hong-Juan Wang, Jia-Wei Wang, Di-Chang Zhong, Long Jiang, Tong-Bu Lu, Chemical Communications 2018, Vol. 54, Pages 11308-11311. DOI2: 10.1039/c8cc04892d
Publication: Highly efficient and selective visible-light driven CO2-to-CO conversion by a Co-based cryptate in H2O-CH3CN solution
[ECD22] Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction. Patricia De La Torre, Jeffrey S. Derrick, Andrew Snider, Peter T. Smith, Matthias Loipersberger, Martin Head-Gordon, Christopher J. Chang, ACS Catalysis 2022, Vol. 12, Pages 8484-8493. DOI2: 10.1021/acscatal.2c02072
Publication: Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction
[PCr23] Photocatalytic CO2 reduction with aminoanthraquinone organic dyes. Qinqin Lei, Huiqing Yuan, Jiehao Du, Mei Ming, Shuang Yang, Ya Chen, Jingxiang Lei, Zhiji Han, Nature Communications 2023, Vol. 14. DOI2: 10.1038/s41467-023-36784-7
Publication: Photocatalytic CO2 reduction with aminoanthraquinone organic dyes
[PpC21] Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore. Huiqing Yuan, Banggui Cheng, Jingxiang Lei, Long Jiang, Zhiji Han, Nature Communications 2021, Vol. 12. DOI2: 10.1038/s41467-021-21923-9
Publication: Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore
[HEa16] Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes. Zhenguo Guo, Siwei Cheng, Claudio Cometto, Elodie Anxolabéhère-Mallart, Siu-Mui Ng, Chi-Chiu Ko, Guijian Liu, Lingjing Chen, Marc Robert, Tai-Chu Lau, Journal of the American Chemical Society 2016, Vol. 138, Pages 9413-9416. DOI2: 10.1021/jacs.6b06002
Publication: Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes
[PCR20] Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid. Kenji Kamada, Jieun Jung, Taku Wakabayashi, Keita Sekizawa, Shunsuke Sato, Takeshi Morikawa, Shunichi Fukuzumi, Susumu Saito, Journal of the American Chemical Society 2020, Vol. 142, Pages 10261-10266. DOI2: 10.1021/jacs.0c03097
Publication: Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid
[Vld17] Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Heng Rao, Luciana C. Schmidt, Julien Bonin, Marc Robert, Nature 2017, Vol. 548, Pages 74-77. DOI2: 10.1038/nature23016
Publication: Visible-light-driven methane formation from CO2 with a molecular iron catalyst
[PCR20] Photocatalytic CO 2 Reduction under Visible‐Light Irradiation by Ruthenium CNC Pincer Complexes. Yasuhiro Arikawa, Itoe Tabata, Yukari Miura, Hiroki Tajiri, Yudai Seto, Shinnosuke Horiuchi, Eri Sakuda, Keisuke Umakoshi, Chemistry – A European Journal 2020, Vol. 26, Pages 5603-5606. DOI2: 10.1002/chem.201905840
Publication: Photocatalytic CO2 Reduction under Visible-Light Irradiation by Ruthenium CNC Pincer Complexes
[HEa18] Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts. Hiroyuki Takeda, Hiroko Kamiyama, Kouhei Okamoto, Mina Irimajiri, Toshihide Mizutani, Kazuhide Koike, Akiko Sekine, Osamu Ishitani, Journal of the American Chemical Society 2018, Vol. 140, Pages 17241-17254. DOI2: 10.1021/jacs.8b10619
Publication: Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts
[VLD18] Visible-Light-Driven Conversion of CO2 to CH4 with an Organic Sensitizer and an Iron Porphyrin Catalyst. Heng Rao, Chern-Hooi Lim, Julien Bonin, Garret M. Miyake, Marc Robert, Journal of the American Chemical Society 2018, Vol. 140, Pages 17830-17834. DOI2: 10.1021/jacs.8b09740
Publication: Visible-Light-Driven Conversion of CO2 to CH4 with an Organic Sensitizer and an Iron Porphyrin Catalyst
[PRD18] Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO 2 Photoreduction. Thibault Fogeron, Pascal Retailleau, Lise‐Marie Chamoreau, Yun Li, Marc Fontecave, Angewandte Chemie International Edition 2018, Vol. 57, Pages 17033-17037. DOI2: 10.1002/anie.201809084
Publication: Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction
[FIR18] Function-Integrated Ru Catalyst for Photochemical CO2 Reduction. Sze Koon Lee, Mio Kondo, Masaya Okamura, Takafumi Enomoto, Go Nakamura, Shigeyuki Masaoka, Journal of the American Chemical Society 2018, Vol. 140, Pages 16899-16903. DOI2: 10.1021/jacs.8b09933
Publication: Function-Integrated Ru Catalyst for Photochemical CO2 Reduction
[PRo16] Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3. Po Ling Cheung, Charles W. Machan, Aramice Y. S. Malkhasian, Jay Agarwal, Clifford P. Kubiak, Inorganic Chemistry 2016, Vol. 55, Pages 3192-3198. DOI2: 10.1021/acs.inorgchem.6b00379
Publication: Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3
[PCr14] Photocatalytic CO2reduction using a Mn complex as a catalyst. Hiroyuki Takeda, Hiroki Koizumi, Kouhei Okamoto, Osamu Ishitani, Chem. Commun. 2014, Vol. 50, Pages 1491-1493. DOI2: 10.1039/c3cc48122k
Publication: Photocatalytic CO2 reduction using a Mn complex as a catalyst
[Nip18] Nickel(ii) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction. Dalton B. Burks, Shakeyia Davis, Robert W. Lamb, Xuan Liu, Roberta R. Rodrigues, Nalaka P. Liyanage, Yujie Sun, Charles Edwin Webster, Jared H. Delcamp, Elizabeth T. Papish, Chemical Communications 2018, Vol. 54, Pages 3819-3822. DOI2: 10.1039/c7cc09507d
Publication: Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction