Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3

From ChemWiki
publication
About
DOI 10.1021/acs.inorgchem.6b00379
Authors Po Ling Cheung, Charles W. Machan, Aramice Y. S. Malkhasian, Jay Agarwal, Clifford P. Kubiak,
Submitted 01.03.2016
Published online 01.03.2016
Licenses -
Subjects Inorganic Chemistry, Physical and Theoretical Chemistry
Go to literature page


Abstract[edit | edit source]

Summary[edit | edit source]

A photochemical reduction of CO2 to CO or formic acid was shown and investigated using the manganese complex Mn(CN)(bpy)(CO)3 as catalyst in combination with the ruthenium-based photosensitizer [Ru(dmb)3][PF6]2. Turnover numbers (TONs) of 21 for CO and 127 for formic acid were reached, depending on the solvent mixture. CO was preferably formed in acetonitrile/TEOA, formic acid was generated as the main product in a mixture of DMF/TEOA. The experiments were conducted under visible-light irradiation (λ = 470 nm) using TEOA or BNAH as sacrificial electron donors (see section SEDs below).

Advances and special progress[edit | edit source]

The authors have expanded the knowledge on the photocatalytic reduction of CO2 with a manganese complex and a ruthenium photosensitizer by exploring the solvent-dependent reduction to CO or formic acid and the stability of the involved complexes in these solvents.

Additional remarks[edit | edit source]

The formation of CO or formic acid could be found to be dependent on the solvent mixture and the concentrations of the catalyst and photosensitizer. Moreover, DMF was found to generate measurable amounts of formic acid in the presence of TEOA in the dark independent of the actual photocatalytic CO2 reduction.

Content of the published article in detail[edit | edit source]

The article contains results for the reduction of CO2 to CO or formic acid under visible-light catalysis using a manganese complex as a catalyst. The catalytic system performs best (referring to the TON of CO production) in acetonitrile/TEOA.

Catalyst[edit | edit source]

Mn(CN)(bpy)(CO)3

Photosensitizer[edit | edit source]

[Ru(dmb)3][PF6]2

Investigation[edit | edit source]

catcat conc [µM]PSPS conc [mM]e-De-D conc [M]solvent A..λexc [nm].TON CO.TON H2TON HCOOH...
1.

Mn(CN)(bpy)(CO)3

0.1

[Ru(dmb)3][PF6]2

0.1

BNAH

0.1

DMF

4703.90.6436
2.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

4703.20.4521
3.

Mn(CN)(bpy)(CO)3

1

[Ru(dmb)3][PF6]2

1

BNAH

0.1

DMF

4702.30.379.5
4.

Mn(CN)(bpy)(CO)3

0.1

[Ru(dmb)3][PF6]2

0.1

BNAH

0.1

DMF

4702.80.216
5.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

4700.920.2511
6.

Mn(CN)(bpy)(CO)3

1

[Ru(dmb)3][PF6]2

1

BNAH

0.1

DMF

4700.830.00735.2
7.

Mn(CN)(bpy)(CO)3

0.1

[Ru(dmb)3][PF6]2

0.1

BNAH

0.1

MeCN

4707.90.564.5
8.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

MeCN

4705.90.242.1
9.

Mn(CN)(bpy)(CO)3

1

[Ru(dmb)3][PF6]2

1

BNAH

0.1

MeCN

4703.20.171.2
10.

Mn(CN)(bpy)(CO)3

0.1

[Ru(dmb)3][PF6]2

0.1

BNAH

0.1

MeCN

4704.70.27
11.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

MeCN

4703.40.14
12.

Mn(CN)(bpy)(CO)3

1

[Ru(dmb)3][PF6]2

1

BNAH

0.1

MeCN

4703.10.14
13.

Mn(CN)(bpy)(CO)3

0.1

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

4709.11.2130
14.

Mn(CN)(bpy)(CO)3

0.1

[Ru(dmb)3][PF6]2

1

BNAH

0.1

DMF

4707.11.6130
15.

Mn(CN)(bpy)(CO)3

1

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

47030.245.8
16.

Mn(CN)(bpy)(CO)3

0.1

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

MeCN

470191.48.1
17.

Mn(CN)(bpy)(CO)3

0.1

[Ru(dmb)3][PF6]2

1

BNAH

0.1

MeCN

470211.39
18.

Mn(CN)(bpy)(CO)3

1

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

MeCN

4704.20.81.4
Experiment-Name: Table 1
catcat conc [µM]PSPS conc [mM]e-De-D conc [M]solvent A..additivesλexc [nm].TON CO.TON H2TON HCOOH...
1.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

BNAH

0.1

DMF

4702.11.9
2.

Mn(CN)(bpy)(CO)3

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

4701.52.85.7
3.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

4705.80.26
4.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

Argon gas4702.6
5.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

Argon gas4701.57.83.8
6.

Mn(CN)(bpy)(CO)3

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

Argon gas4700.871.33.2
7.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

BNAH

0.1

DMF

Argon gas4702.32.2
8.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

Argon gas4702.41.4
9.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

BNAH

0.1

DMF

4702
10.

Mn(CN)(bpy)(CO)3

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

4700.601.20.72
11.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

4702.2
12.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

Argon gas4702.24.40.55
13.

Mn(CN)(bpy)(CO)3

0.5

[Ru(dmb)3][PF6]2

0.5

BNAH

0.1

DMF

Argon gas4702.41.4
Experiment-Name: Table 2

Sacrificial electron donor[edit | edit source]

In this study, the experiments were done with the sacrificial electron donors TEOA (100507) and BNAH (BNAH).

Additives[edit | edit source]

In this study, control experiments under argon atmosphere were conducted.

Investigations

  • Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)
  • Table 2 (Molecular process, Photocatalytic CO2 conversion experiments)