Molecule:100843
From ChemWiki
molecule
Properties | |
---|---|
CID | 11388194 |
CAS | 94928-86-6 |
IUPAC-Name | iridium(3+);2-phenylpyridine |
Abbreviation | Ir(ppy)3 |
Trivialname | Tris(2-phenylpyridinato-C2,N)iridium(III) |
Exact mass | 655.15995 |
Molecular formula | C33H24IrN3 |
LogP | n/a |
Has vendors | true |
Molecular role | photosensitizer |
Synonyms | Tris(2-phenylpyridinato-C2,N)iridium(III), Ir(ppy)3, Tris(2-phenylpyridinato)iridium(III), Tris(2-phenylpyridinato)iridium(III) (purified by sublimation), tris(2-(pyridin-2-yl)phenyl)iridium, TRIS(2-(PYRIDIN-2-YL)PHENYL)IRIDIUM, MFCD12022527, fac-Tris(2-phenylpyridine)iridium(III), SCHEMBL294298, BCP07959 |
Click here to copy MOL-file.
Click here to show SMILES and InChI.
Molecule is used on following pages
topic
- Photocatalytic CO2 conversion to CO
- Homogeneous photocatalytic CO2 conversion
- Photocatalytic CO2 conversion to HCOOH
- Photocatalytic CO2 conversion to CH4
publication
- Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction
- Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy
- Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst
- Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst
- Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis
- Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex
- Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction
investigation
- Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center/Table 1
- Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction/Photocatalytic CO2 reduction under varied conditions
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst/Table 1
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst/Table 2 CO gas
- Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis/Photocatalytic reduction of CO2: conditions optimization
- Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy/photocatalytic CO2 conversion under different conditions
- Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst/photocatalytic conversion of CO2 to CO
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Results Co2+ experiments taken from SI
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/CO2 Reduction under diverse conditions with diverse sensitizers
- Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex/Table 1
- Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4/Results for different electron donors and proton donors
other
Molecule roles
Investigation type | Photosensitizer |
---|---|
Photocatalytic CO2 conversion experiments | |
Cyclic Voltammetry experiments | |
Absorption Emission Spectroscopy experiments |