Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.
Retrieved from "https://chemwiki.scc.kit.edu/main/mediawiki/Category:Photocatalytic_CO2_conversion_to_CO"
topic
publication
investigation
molecule
Current site
Topics
no subcategories
no subcategories
no subcategories
- A Cu(I) Co(II) cryptate for the visible light-driven reduction of CO2
- A Dinuclear Cobalt Cryptate as a Homogeneous Photocatalyst for Highly Selective and Efficient Visible-Light Driven CO2 Reduction to CO in CH3CN-H2O Solution
- Carbon dioxide reduction via light activation of a ruthenium–Ni(cyclam) complex
- Exploring the Full Potential of Photocatalytic Carbon Dioxide Reduction Using a Dinuclear Re2Cl2 Complex Assisted by Various Photosensitizers
- Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes
- Highly efficient and selective visible-light driven CO2-to-CO conversion by a Co-based cryptate in H2O-CH3CN solution
- Light-Driven Reduction of CO2 to CO in Water with a Cobalt Molecular Catalyst and an Organic Sensitizer
- Merging an organic TADF photosensitizer and a simple terpyridine–Fe(iii) complex for photocatalytic CO2 reduction
- New Photosensitizers Based on Heteroleptic Cu(I) Complexes and CO2 Photocatalytic Reduction with (Ni(II)(cyclam))Cl2
- Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction
- Phenoxazine-Sensitized CO2-to-CO Reduction with an Iron Porphyrin Catalyst: A Redox Properties-Catalytic Performance Study
- Photocatalytic CO2 Reduction Mediated by Electron Transfer via the Excited Triplet State of Zn(II) Porphyrin
- Photocatalytic CO2 reduction with aminoanthraquinone organic dyes
- Photocatalytic Carbon Dioxide Reduction Using Nickel Complexes as Catalysts
- Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues.
- Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3
- Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore
- Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst
- Visible light driven reduction of CO2 catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer
- Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex
- Visible-Light-Driven Photocatalytic CO2 Reduction by a Ni(II) Complex Bearing a Bioinspired Tetradentate Ligand for Selective CO Production
- Water-Assisted Highly Efficient Photocatalytic Reduction of CO2 to CO with Noble Metal-Free Bis(terpyridine)iron(II) Complexes and an Organic Photosensitizer
- Photocatalytic reduction of CO2 (A Cu(I) Co(II) cryptate for the visible light-driven reduction of CO2)
- Best result and control experiments (A Dinuclear Cobalt Cryptate as a Homogeneous Photocatalyst for Highly Selective and Efficient Visible-Light Driven CO2 Reduction to CO in CH3CN-H2O Solution)
- Table 2 (A Dinuclear Cobalt Cryptate as a Homogeneous Photocatalyst for Highly Selective and Efficient Visible-Light Driven CO2 Reduction to CO in CH3CN-H2O Solution)
- Photoreduction of CO2 result (Carbon dioxide reduction via light activation of a ruthenium–Ni(cyclam) complex)
- Table 1 (Carbon dioxide reduction via light activation of a ruthenium–Ni(cyclam) complex)
- Optimizations of the conditions (Exploring the Full Potential of Photocatalytic Carbon Dioxide Reduction Using a Dinuclear Re2Cl2 Complex Assisted by Various Photosensitizers)
- Table 1 (Exploring the Full Potential of Photocatalytic Carbon Dioxide Reduction Using a Dinuclear Re2Cl2 Complex Assisted by Various Photosensitizers)
- Co(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2 (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Co(qpy)(H2O)2(ClO4)2 and purpurin (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Fe(qpy)(H2O)2(ClO4)2 (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Fe(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2 (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Optimizations of conditions for Co(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2 (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Optimizations of conditions for Co(qpy)(H2O)2(ClO4)2 and purpurin (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Optimizations of conditions for Fe(qpy)(H2O)2(ClO4)2 (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Optimizations of conditions for Fe(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2 (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- photocatalytic CO2 conversion under different conditions (Highly efficient and selective visible-light driven CO2-to-CO conversion by a Co-based cryptate in H2O-CH3CN solution)
- Photocatalytic CO2 Reduction by 1 (2 μM) in CO2-Saturated Aqueous CH3CN Solutions (Light-Driven Reduction of CO2 to CO in Water with a Cobalt Molecular Catalyst and an Organic Sensitizer)
- BIH + TEOA under Various Conditions (Light-Driven Reduction of CO2 to CO in Water with a Cobalt Molecular Catalyst and an Organic Sensitizer/Visible-Light Driven CO2 Reduction with 1/TATA+)
- photocatalytic reduction of CO2 to CO (Merging an organic TADF photosensitizer and a simple terpyridine–Fe(iii) complex for photocatalytic CO2 reduction)
- Photocatalytic CO2 reduction and control experiments (New Photosensitizers Based on Heteroleptic Cu(I) Complexes and CO2 Photocatalytic Reduction with (Ni(II)(cyclam))Cl2)
- Photocatalytic CO2 reduction under varied conditions (Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction)
- Table 1 (Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction)
- Table 1 (Phenoxazine-Sensitized CO2-to-CO Reduction with an Iron Porphyrin Catalyst: A Redox Properties-Catalytic Performance Study)
- photocatalytic CO2 conversion (Photocatalytic CO2 Reduction Mediated by Electron Transfer via the Excited Triplet State of Zn(II) Porphyrin)
- Photocatalytic CO2 reduction with varying concentrations of cat and PS (Photocatalytic CO2 reduction with aminoanthraquinone organic dyes)
- Photocatalytic reduction of CO2 with different photosensitizers (Photocatalytic CO2 reduction with aminoanthraquinone organic dyes)
- CO2 reduction experiments testing different catalysts (Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues.)
- CO2 reduction experiments with different catalysts (Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues.)
- Optimization of CO2 reduction conditions (Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues.)
- Table 1 (Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3)
- Table 2 (Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3)
- Control experiments (Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore)
- Photocatalytic CO2 reduction: best results (Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore)
- Table 1 (Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore)
- photocatalytic conversion of CO2 to CO (Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst)
- Table 1 (Visible-Light-Driven Photocatalytic CO2 Reduction by a Ni(II) Complex Bearing a Bioinspired Tetradentate Ligand for Selective CO Production)
- Table 1 (Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex)
- Table 1 (Visible light driven reduction of CO2 catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer)
- photocatalytic CO2 conversion (Water-Assisted Highly Efficient Photocatalytic Reduction of CO2 to CO with Noble Metal-Free Bis(terpyridine)iron(II) Complexes and an Organic Photosensitizer)
Navigation