Molecule:100843: Difference between revisions
From ChemWiki
molecule
(auto-generated) |
No edit summary |
||
Line 12: | Line 12: | ||
|moleculeKey=NSABRUJKERBGOU-UHFFFAOYSA-N | |moleculeKey=NSABRUJKERBGOU-UHFFFAOYSA-N | ||
|molOrRxn= | |molOrRxn= | ||
-INDIGO-12122418232D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 37 39 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 C -2.32486 -6.44117 0.0 0 | |||
M V30 2 C -1.82486 -5.57514 0.0 0 | |||
M V30 3 C -0.824858 -5.57514 0.0 0 | |||
M V30 4 C -0.324858 -6.44117 0.0 0 | |||
M V30 5 C -0.824858 -7.30719 0.0 0 CHG=-1 | |||
M V30 6 C -1.82486 -7.30719 0.0 0 | |||
M V30 7 C 0.675142 -6.44117 0.0 0 | |||
M V30 8 C 1.17514 -5.57514 0.0 0 | |||
M V30 9 C 2.17514 -5.57514 0.0 0 | |||
M V30 10 C 2.67514 -6.44117 0.0 0 | |||
M V30 11 C 2.17514 -7.30719 0.0 0 | |||
M V30 12 N 1.17514 -7.30719 0.0 0 | |||
M V30 13 C 4.67514 -6.44117 0.0 0 | |||
M V30 14 C 5.17514 -5.57514 0.0 0 | |||
M V30 15 C 6.17514 -5.57514 0.0 0 | |||
M V30 16 C 6.67514 -6.44117 0.0 0 | |||
M V30 17 C 6.17514 -7.30719 0.0 0 CHG=-1 | |||
M V30 18 C 5.17514 -7.30719 0.0 0 | |||
M V30 19 C 7.67514 -6.44117 0.0 0 | |||
M V30 20 C 8.17514 -5.57514 0.0 0 | |||
M V30 21 C 9.17514 -5.57514 0.0 0 | |||
M V30 22 C 9.67514 -6.44117 0.0 0 | |||
M V30 23 C 9.17514 -7.30719 0.0 0 | |||
M V30 24 N 8.17514 -7.30719 0.0 0 | |||
M V30 25 C -2.32486 -2.70912 0.0 0 | |||
M V30 26 C -1.82486 -1.84309 0.0 0 | |||
M V30 27 C -0.824858 -1.84309 0.0 0 | |||
M V30 28 C -0.324858 -2.70912 0.0 0 | |||
M V30 29 C -0.824858 -3.57514 0.0 0 CHG=-1 | |||
M V30 30 C -1.82486 -3.57514 0.0 0 | |||
M V30 31 C 0.675142 -2.70912 0.0 0 | |||
M V30 32 C 1.17514 -1.84309 0.0 0 | |||
M V30 33 C 2.17514 -1.84309 0.0 0 | |||
M V30 34 C 2.67514 -2.70912 0.0 0 | |||
M V30 35 C 2.17514 -3.57514 0.0 0 | |||
M V30 36 N 1.17514 -3.57514 0.0 0 | |||
M V30 37 Ir 4.67514 -3.57514 0.0 0 CHG=3 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 1 2 | |||
M V30 2 1 2 3 | |||
M V30 3 2 3 4 | |||
M V30 4 1 4 5 | |||
M V30 5 2 5 6 | |||
M V30 6 1 6 1 | |||
M V30 7 1 4 7 | |||
M V30 8 2 7 8 | |||
M V30 9 1 8 9 | |||
M V30 10 2 9 10 | |||
M V30 11 1 10 11 | |||
M V30 12 2 11 12 | |||
M V30 13 1 12 7 | |||
M V30 14 2 13 14 | |||
M V30 15 1 14 15 | |||
M V30 16 2 15 16 | |||
M V30 17 1 16 17 | |||
M V30 18 2 17 18 | |||
M V30 19 1 18 13 | |||
M V30 20 1 16 19 | |||
M V30 21 2 19 20 | |||
M V30 22 1 20 21 | |||
M V30 23 2 21 22 | |||
M V30 24 1 22 23 | |||
M V30 25 2 23 24 | |||
M V30 26 1 24 19 | |||
M V30 27 2 25 26 | |||
M V30 28 1 26 27 | |||
M V30 29 2 27 28 | |||
M V30 30 1 28 29 | |||
M V30 31 2 29 30 | |||
M V30 32 1 30 25 | |||
M V30 33 1 28 31 | |||
M V30 34 2 31 32 | |||
M V30 35 1 32 33 | |||
M V30 36 2 33 34 | |||
M V30 37 1 34 35 | |||
M V30 38 2 35 36 | |||
M V30 39 1 36 31 | |||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
|smiles= | |smiles= | ||
|inchi= | |inchi= |
Revision as of 18:23, 12 December 2024
Properties | |
---|---|
CID | 11388194 |
CAS | 94928-86-6 |
IUPAC-Name | iridium(3+);2-phenylpyridine |
Abbreviation | Ir(ppy)3 |
Trivialname | Tris(2-phenylpyridinato-C2,N)iridium(III) |
Exact mass | 655.15995 |
Molecular formula | C33H24IrN3 |
LogP | n/a |
Has vendors | true |
Molecular role | photosensitizer |
Synonyms | [[Synonym::Tris[2-phenylpyridinato-C2,N]iridium(III)]], Ir(ppy)3, Tris(2-phenylpyridinato)iridium(III), Tris(2-phenylpyridinato)iridium(III) (purified by sublimation), tris(2-(pyridin-2-yl)phenyl)iridium, [[Synonym::TRIS[2-(PYRIDIN-2-YL)PHENYL]IRIDIUM]], MFCD12022527, fac-Tris(2-phenylpyridine)iridium(III), SCHEMBL294298, BCP07959 |
Click here to copy MOL-file.
Click here to show SMILES and InChI.
Molecule is used on following pages
topic
- Photocatalytic CO2 conversion to CO
- Homogeneous photocatalytic CO2 conversion
- Photocatalytic CO2 conversion to HCOOH
- Photocatalytic CO2 conversion to CH4
publication
- Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction
- Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy
- Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst
- Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst
- Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis
- Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex
- Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction
investigation
- Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center/Table 1
- Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction/Photocatalytic CO2 reduction under varied conditions
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst/Table 1
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst/Table 2 CO gas
- Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis/Photocatalytic reduction of CO2: conditions optimization
- Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy/photocatalytic CO2 conversion under different conditions
- Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst/photocatalytic conversion of CO2 to CO
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Results Co2+ experiments taken from SI
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/CO2 Reduction under diverse conditions with diverse sensitizers
- Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex/Table 1
- Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4/Results for different electron donors and proton donors
other
Molecule roles
Investigation type | Photosensitizer |
---|---|
Photocatalytic CO2 conversion experiments | |
Cyclic Voltammetry experiments | |
Absorption Emission Spectroscopy experiments |