Molecule:100508: Difference between revisions
From ChemWiki
molecule
(auto-generated) |
(auto-generated) |
||
Line 12: | Line 12: | ||
|moleculeKey=VDFIVJSRRJXMAU-UHFFFAOYSA-N | |moleculeKey=VDFIVJSRRJXMAU-UHFFFAOYSA-N | ||
|molOrRxn= | |molOrRxn= | ||
-INDIGO- | -INDIGO-07072219392D | ||
0 0 0 0 0 0 0 0 0 0 0 V3000 | 0 0 0 0 0 0 0 0 0 0 0 V3000 | ||
Line 18: | Line 18: | ||
M V30 COUNTS 17 19 0 0 0 | M V30 COUNTS 17 19 0 0 0 | ||
M V30 BEGIN ATOM | M V30 BEGIN ATOM | ||
M V30 1 C 3. | M V30 1 C 3.8 -3.87499 0.0 0 | ||
M V30 2 C | M V30 2 C 4.66601 -4.37499 0.0 0 | ||
M V30 3 C 4. | M V30 3 C 4.66601 -5.37501 0.0 0 | ||
M V30 4 C | M V30 4 C 3.8 -5.87501 0.0 0 | ||
M V30 5 C | M V30 5 C 2.93399 -5.37501 0.0 0 | ||
M V30 6 C | M V30 6 C 2.93399 -4.37499 0.0 0 | ||
M V30 7 N | M V30 7 N 5.61711 -4.06591 0.0 0 | ||
M V30 8 C 6. | M V30 8 C 6.20492 -4.87493 0.0 0 | ||
M V30 9 N | M V30 9 N 5.6171 -5.68399 0.0 0 | ||
M V30 10 C | M V30 10 C 5.92609 -3.11484 0.0 0 | ||
M V30 11 C | M V30 11 C 5.92613 -6.63504 0.0 0 | ||
M V30 12 C | M V30 12 C 7.20492 -4.87492 0.0 0 | ||
M V30 13 C | M V30 13 C 7.70493 -4.00891 0.0 0 | ||
M V30 14 C 8. | M V30 14 C 8.70494 -4.00891 0.0 0 | ||
M V30 15 C 9. | M V30 15 C 9.20495 -4.87492 0.0 0 | ||
M V30 16 C | M V30 16 C 8.70494 -5.74093 0.0 0 | ||
M V30 17 C | M V30 17 C 7.70493 -5.74093 0.0 0 | ||
M V30 END ATOM | M V30 END ATOM | ||
M V30 BEGIN BOND | M V30 BEGIN BOND | ||
M V30 1 1 | M V30 1 1 1 2 | ||
M V30 2 | M V30 2 2 2 3 | ||
M V30 3 | M V30 3 1 3 4 | ||
M V30 4 2 | M V30 4 2 4 5 | ||
M V30 5 1 5 6 | M V30 5 1 5 6 | ||
M V30 6 2 6 | M V30 6 2 6 1 | ||
M V30 7 1 2 7 | M V30 7 1 2 7 | ||
M V30 8 1 7 8 | M V30 8 1 7 8 | ||
M V30 9 1 8 9 | M V30 9 1 8 9 | ||
M V30 10 1 9 | M V30 10 1 9 3 | ||
M V30 11 1 | M V30 11 1 7 10 | ||
M V30 12 | M V30 12 1 9 11 | ||
M V30 13 | M V30 13 1 8 12 | ||
M V30 14 1 | M V30 14 1 12 13 | ||
M V30 15 | M V30 15 2 13 14 | ||
M V30 16 | M V30 16 1 14 15 | ||
M V30 17 | M V30 17 2 15 16 | ||
M V30 18 1 | M V30 18 1 16 17 | ||
M V30 19 | M V30 19 2 17 12 | ||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
|smiles=C1=CC=CC2N(C)C(C3=CC=CC=C3)N(C)C1=2 | |||
|smiles=C1=CC= | |||
|inchi=1S/C15H16N2/c1-16-13-10-6-7-11-14(13)17(2)15(16)12-8-4-3-5-9-12/h3-11,15H,1-2H3 | |inchi=1S/C15H16N2/c1-16-13-10-6-7-11-14(13)17(2)15(16)12-8-4-3-5-9-12/h3-11,15H,1-2H3 | ||
|inchikey=VDFIVJSRRJXMAU-UHFFFAOYSA-N | |inchikey=VDFIVJSRRJXMAU-UHFFFAOYSA-N | ||
|width=300px | |width=300px | ||
|height=VDFIVJSRRJXMAU-UHFFFAOYSA-N | |height=VDFIVJSRRJXMAU-UHFFFAOYSA-N | ||
|float= | |float=left | ||
|parent= | |parent= | ||
}} | }} |
Revision as of 16:33, 3 November 2022
Properties | |
---|---|
CID | 199049 |
CAS | 3652-92-4 |
IUPAC-Name | 1,3-dimethyl-2-phenyl-2h-benzimidazole |
Abbreviation | n/a |
Trivialname | 13-dimethyl-2-phenylbenzimidazoline |
Exact mass | 224.131348519 |
Molecular formula | n/a |
LogP | n/a |
Has vendors | true |
Molecular role | n/a |
Synonyms | 13-dimethyl-2-phenylbenzimidazoline,13-dimethyl-2-phenyl-23-dihydro-1h-benzodimidazole,13-dimethyl-2-phenyl-2h-benzimidazole,benzimidazoline 13-dimethyl-2-phenyl-,13-dimethyl-13-dihydro-2-phenyl-2h-benzimidazole,chemdiv3_000319,schembl993337,dtxsid90190025,hms1473o11,zinc225668 |
Click here to copy MOL-file.
Click here to show SMILES and InChI.
Molecule is used on following pages
topic
- Photocatalytic CO2 conversion to CO
- Homogeneous photocatalytic CO2 conversion
- Photocatalytic CO2 conversion to HCOOH
- Photocatalytic CO2 conversion to CH4
publication
- Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts
- Phenoxazine-Sensitized CO2-to-CO Reduction with an Iron Porphyrin Catalyst: A Redox Properties-Catalytic Performance Study
- Visible-Light-Driven Photocatalytic CO2 Reduction by a Ni(II) Complex Bearing a Bioinspired Tetradentate Ligand for Selective CO Production
- Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction
- Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid
- Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction
- New Photosensitizers Based on Heteroleptic Cu(I) Complexes and CO2 Photocatalytic Reduction with (Ni(II)(cyclam))Cl2
- Exploring the Full Potential of Photocatalytic Carbon Dioxide Reduction Using a Dinuclear Re2Cl2 Complex Assisted by Various Photosensitizers
- Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy
- Function-Integrated Ru Catalyst for Photochemical CO2 Reduction
- Photocatalytic CO2 Reduction Mediated by Electron Transfer via the Excited Triplet State of Zn(II) Porphyrin
- Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes
- Light-Driven Reduction of CO2 to CO in Water with a Cobalt Molecular Catalyst and an Organic Sensitizer
- Visible-Light-Driven Conversion of CO2 to CH4 with an Organic Sensitizer and an Iron Porphyrin Catalyst
- Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction
investigation
- Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid/Photocatalytic reduction of CO2, best TON
- Phenoxazine-Sensitized CO2-to-CO Reduction with an Iron Porphyrin Catalyst: A Redox Properties-Catalytic Performance Study/Table 1
- Visible-Light-Driven Photocatalytic CO2 Reduction by a Ni(II) Complex Bearing a Bioinspired Tetradentate Ligand for Selective CO Production/Table 1
- Light-Driven Reduction of CO2 to CO in Water with a Cobalt Molecular Catalyst and an Organic Sensitizer/Photocatalytic CO2 Reduction by 1 (2 μM) in CO2-Saturated Aqueous CH3CN Solutions
- Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction/Table 1
- Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts/Results for photocatalytic reduction of CO2
- Exploring the Full Potential of Photocatalytic Carbon Dioxide Reduction Using a Dinuclear Re2Cl2 Complex Assisted by Various Photosensitizers/Optimizations of the conditions
- Function-Integrated Ru Catalyst for Photochemical CO2 Reduction/Control experiments
- Function-Integrated Ru Catalyst for Photochemical CO2 Reduction/Presence of water effect
- Function-Integrated Ru Catalyst for Photochemical CO2 Reduction/Hg poisoning
- Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction/Photocatalytic CO2 reduction under varied conditions
- Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts/Durability test
- Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore/Photocatalytic CO2 reduction: best results
- Visible-Light-Driven Conversion of CO2 to CH4 with an Organic Sensitizer and an Iron Porphyrin Catalyst/Photocatalytic reduction of CO
- Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore/Control experiments
- New Photosensitizers Based on Heteroleptic Cu(I) Complexes and CO2 Photocatalytic Reduction with (Ni(II)(cyclam))Cl2/Photocatalytic CO2 reduction and control experiments
- Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues./CO2 reduction experiments testing different catalysts
- Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues./Optimization of CO2 reduction conditions
- Photocatalytic CO2 reduction with aminoanthraquinone organic dyes/Photocatalytic reduction of CO2 with different photosensitizers
- Photocatalytic CO2 reduction with aminoanthraquinone organic dyes/Photocatalytic CO2 reduction with varying concentrations of cat and PS
- Function-Integrated Ru Catalyst for Photochemical CO2 Reduction/Concentration and solvent effect
- Function-Integrated Ru Catalyst for Photochemical CO2 Reduction/Maximum TON
- Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes/Optimizations of conditions for Co(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2
- Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes/Optimizations of conditions for Fe(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2
- Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes/Optimizations of conditions for Co(qpy)(H2O)2(ClO4)2 and purpurin
- Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes/Optimizations of conditions for Fe(qpy)(H2O)2(ClO4)2
- Photocatalytic CO2 Reduction Mediated by Electron Transfer via the Excited Triplet State of Zn(II) Porphyrin/photocatalytic CO2 conversion
- Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4/Results for different electron donors and proton donors
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Iron-Catalyzed Photochemical CO2 Reduction under diverse conditions
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Iron-Catalyzed Photochemical CO2 Reduction under diverse conditions error
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 Conversion with Co catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 conversion with Co catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 Co catalyst testing
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/testtest2
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Results obtained with Co2+ catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/results CO2+ experiments
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/CO2+ results from SI
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Results Co2+ experiments taken from SI
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/CO2 Reduction under diverse conditions with diverse sensitizers
other
- Light-Driven Reduction of CO2 to CO in Water with a Cobalt Molecular Catalyst and an Organic Sensitizer/Visible-Light Driven CO2 Reduction with 1/TATA+/BIH + TEOA under Various Conditions
- CO2 conversion to CO
Molecule roles
Investigation type | Electron donor |
---|---|
Photocatalytic CO2 conversion experiments | |
Cyclic Voltammetry experiments |