Molecule:100843: Difference between revisions
From ChemWiki
molecule
(auto-generated) |
(auto-generated) |
||
Line 11: | Line 11: | ||
|moleculeKey=NSABRUJKERBGOU-UHFFFAOYSA-N | |moleculeKey=NSABRUJKERBGOU-UHFFFAOYSA-N | ||
|molOrRxn= | |molOrRxn= | ||
|smiles= | -INDIGO-01102415372D | ||
|inchi= | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 37 45 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 C 8.00985 -2.17507 0.0 0 | |||
M V30 2 C 9.74015 -2.17459 0.0 0 | |||
M V30 3 C 8.87664 -1.67497 0.0 0 | |||
M V30 4 C 9.74015 -3.17553 0.0 0 | |||
M V30 5 C 8.00985 -3.18002 0.0 0 | |||
M V30 6 N 8.87882 -3.67503 0.0 0 | |||
M V30 7 C 10.6062 -3.67553 0.0 0 | |||
M V30 8 C 12.3365 -3.67389 0.0 0 | |||
M V30 9 C 11.4726 -3.17484 0.0 0 | |||
M V30 10 C 12.3371 -4.67483 0.0 0 | |||
M V30 11 C 10.6068 -4.68048 0.0 0 CHG=-1 | |||
M V30 12 C 11.4762 -5.17491 0.0 0 | |||
M V30 13 C 8.05985 -8.20007 0.0 0 | |||
M V30 14 C 9.79015 -8.19959 0.0 0 | |||
M V30 15 C 8.92664 -7.69997 0.0 0 CHG=-1 | |||
M V30 16 C 9.79015 -9.20053 0.0 0 | |||
M V30 17 C 8.05985 -9.20502 0.0 0 | |||
M V30 18 C 8.92882 -9.70003 0.0 0 | |||
M V30 19 C 10.6562 -7.69959 0.0 0 | |||
M V30 20 C 11.5199 -6.20028 0.0 0 | |||
M V30 21 N 10.6558 -6.69887 0.0 0 | |||
M V30 22 C 12.3871 -6.70017 0.0 0 | |||
M V30 23 C 11.5268 -8.20148 0.0 0 | |||
M V30 24 C 12.3897 -7.69585 0.0 0 | |||
M V30 25 C 5.35985 -6.85007 0.0 0 | |||
M V30 26 N 7.09015 -6.84959 0.0 0 | |||
M V30 27 C 6.22664 -6.34997 0.0 0 | |||
M V30 28 C 7.09015 -7.85053 0.0 0 | |||
M V30 29 C 5.35985 -7.85502 0.0 0 | |||
M V30 30 C 6.22882 -8.35003 0.0 0 | |||
M V30 31 C 6.22664 -5.34997 0.0 0 | |||
M V30 32 C 5.36006 -3.8523 0.0 0 | |||
M V30 33 C 5.3598 -4.84994 0.0 0 | |||
M V30 34 C 6.22657 -3.35125 0.0 0 | |||
M V30 35 C 7.09661 -4.84691 0.0 0 CHG=-1 | |||
M V30 36 C 7.09015 -3.84686 0.0 0 | |||
M V30 37 Ir 8.91263 -5.69691 0.0 0 CHG=3 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 3 1 | |||
M V30 2 2 4 2 | |||
M V30 3 1 1 5 | |||
M V30 4 1 2 3 | |||
M V30 5 2 5 6 | |||
M V30 6 1 6 4 | |||
M V30 7 1 4 7 | |||
M V30 8 2 9 7 | |||
M V30 9 2 10 8 | |||
M V30 10 1 7 11 | |||
M V30 11 1 8 9 | |||
M V30 12 2 11 12 | |||
M V30 13 1 12 10 | |||
M V30 14 2 15 13 | |||
M V30 15 2 16 14 | |||
M V30 16 1 13 17 | |||
M V30 17 1 14 15 | |||
M V30 18 2 17 18 | |||
M V30 19 1 18 16 | |||
M V30 20 1 14 19 | |||
M V30 21 2 21 19 | |||
M V30 22 2 22 20 | |||
M V30 23 1 19 23 | |||
M V30 24 1 20 21 | |||
M V30 25 2 23 24 | |||
M V30 26 1 24 22 | |||
M V30 27 2 27 25 | |||
M V30 28 2 28 26 | |||
M V30 29 1 25 29 | |||
M V30 30 1 26 27 | |||
M V30 31 2 29 30 | |||
M V30 32 1 30 28 | |||
M V30 33 1 27 31 | |||
M V30 34 2 33 31 | |||
M V30 35 2 34 32 | |||
M V30 36 1 31 35 | |||
M V30 37 1 32 33 | |||
M V30 38 2 35 36 | |||
M V30 39 1 36 34 | |||
M V30 40 10 35 37 | |||
M V30 41 10 37 6 | |||
M V30 42 10 11 37 | |||
M V30 43 10 37 21 | |||
M V30 44 10 15 37 | |||
M V30 45 10 37 26 | |||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
|smiles=C1C=N2[Ir+3]3(N4C(C5[C-]3=CC=CC=5)=CC=CC=4)3([C-]4C(C5C=CC=CN=53)=CC=CC=4)[C-]3=CC=CC=C3C2=CC=1 | |||
|inchi=1S/3C11H8N.Ir/c3*1-2-6-10(7-3-1)11-8-4-5-9-12-11;/h3*1-6,8-9H;/q3*-1;+3 | |||
|inchikey=NSABRUJKERBGOU-UHFFFAOYSA-N | |inchikey=NSABRUJKERBGOU-UHFFFAOYSA-N | ||
|width= | |width=200 | ||
|height= | |height=200 | ||
|float=none | |float=none | ||
|logP= | |logP= | ||
|parent= | |parent= | ||
}} | }} |
Revision as of 10:00, 22 May 2024
Properties | |
---|---|
CID | 11388194 |
CAS | 94928-86-6 |
IUPAC-Name | iridium(3+);2-phenylpyridine |
Abbreviation | Ir(ppy)3 |
Trivialname | Tris(2-phenylpyridinato-C2,N)iridium(III) |
Exact mass | 655.15995 |
Molecular formula | C33H24IrN3 |
LogP | n/a |
Has vendors | true |
Molecular role | n/a |
Synonyms | [[Synonym::Tris[2-phenylpyridinato-C2,N]iridium(III)]], Ir(ppy)3, Tris(2-phenylpyridinato)iridium(III), Tris(2-phenylpyridinato)iridium(III) (purified by sublimation), tris(2-(pyridin-2-yl)phenyl)iridium, [[Synonym::TRIS[2-(PYRIDIN-2-YL)PHENYL]IRIDIUM]], MFCD12022527, fac-Tris(2-phenylpyridine)iridium(III), SCHEMBL294298, BCP07959 |
Click here to copy MOL-file.
Click here to show SMILES and InChI.
Molecule is used on following pages
topic
- Photocatalytic CO2 conversion to CO
- Homogeneous photocatalytic CO2 conversion
- Photocatalytic CO2 conversion to HCOOH
- Photocatalytic CO2 conversion to CH4
publication
- Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction
- Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex
- Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy
- Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst
- Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst
- Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis
- Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction
investigation
- Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center/Table 1
- Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction/Photocatalytic CO2 reduction under varied conditions
- Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex/Table 1
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst/Table 1
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst/Table 2 CO gas
- Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis/Photocatalytic reduction of CO2: conditions optimization
- Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy/photocatalytic CO2 conversion under different conditions
- Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst/photocatalytic conversion of CO2 to CO
- Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4/Results for different electron donors and proton donors
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Iron-Catalyzed Photochemical CO2 Reduction under diverse conditions
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Iron-Catalyzed Photochemical CO2 Reduction under diverse conditions error
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 Conversion with Co catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 conversion with Co catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 Co catalyst testing
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/testtest2
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Results obtained with Co2+ catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/results CO2+ experiments
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/CO2+ results from SI
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Results Co2+ experiments taken from SI
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/CO2 Reduction under diverse conditions with diverse sensitizers
other