Molecule:100843: Difference between revisions
From ChemWiki
molecule
(auto-generated) |
No edit summary |
||
Line 1: | Line 1: | ||
{{Molecule | {{Molecule | ||
|abbrev=Ir(ppy)3 | |||
|trivialname=tris2-phenylpyridinato-c2niridium(iii) | |||
|cid=11388194 | |cid=11388194 | ||
|iupacName=iridium(3+);2-phenylpyridine | |iupacName=iridium(3+);2-phenylpyridine | ||
|molecularMass=655.15995 | |molecularMass=655.15995 | ||
|molecularFormula=C<sub>33</sub>H<sub>24</sub>IrN<sub>3</sub> | |molecularFormula=C<sub>33</sub>H<sub>24</sub>IrN<sub>3</sub> | ||
|synonyms=tris2-phenylpyridinato-c2niridium(iii),ir(ppy)3,tris(2-phenylpyridinato)iridium(iii),tris(2-phenylpyridinato)iridium(iii) (purified by sublimation),tris(2-(pyridin-2-yl)phenyl)iridium,tris2-(pyridin-2-yl)phenyliridium,mfcd12022527,fac-tris(2-phenylpyridine)iridium(iii),schembl294298,bcp07959 | |synonyms=tris2-phenylpyridinato-c2niridium(iii),ir(ppy)3,tris(2-phenylpyridinato)iridium(iii),tris(2-phenylpyridinato)iridium(iii) (purified by sublimation),tris(2-(pyridin-2-yl)phenyl)iridium,tris2-(pyridin-2-yl)phenyliridium,mfcd12022527,fac-tris(2-phenylpyridine)iridium(iii),schembl294298,bcp07959 | ||
|cas=94928-86-6 | |cas=94928-86-6 | ||
|hasVendors=true | |hasVendors=true | ||
|moleculeKey=NSABRUJKERBGOU-UHFFFAOYSA-N | |moleculeKey=NSABRUJKERBGOU-UHFFFAOYSA-N | ||
|molOrRxn= | |molOrRxn=-INDIGO-01112416122D | ||
0 0 0 0 0 0 0 0 0 0 0 V3000 | 0 0 0 0 0 0 0 0 0 0 0 V3000 | ||
Line 105: | Line 103: | ||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
|smiles=C1C=N2[Ir+3]3(N4C(C5[C-]3=CC=CC=5)=CC=CC=4)3([C-]4C(C5C=CC=CN=53)=CC=CC=4)[C-]3=CC=CC=C3C2=CC=1 | |smiles=C1C=N2[Ir+3]3(N4C(C5[C-]3=CC=CC=5)=CC=CC=4)3([C-]4C(C5C=CC=CN=53)=CC=CC=4)[C-]3=CC=CC=C3C2=CC=1 | ||
|inchi=1S/3C11H8N.Ir/c3*1-2-6-10(7-3-1)11-8-4-5-9-12-11;/h3*1-6,8-9H;/q3*-1;+3 | |inchi=1S/3C11H8N.Ir/c3*1-2-6-10(7-3-1)11-8-4-5-9-12-11;/h3*1-6,8-9H;/q3*-1;+3 | ||
Line 112: | Line 109: | ||
|height=200 | |height=200 | ||
|float=none | |float=none | ||
}} | }} |
Revision as of 16:13, 11 January 2024
Properties | |
---|---|
CID | 11388194 |
CAS | 94928-86-6 |
IUPAC-Name | iridium(3+);2-phenylpyridine |
Abbreviation | Ir(ppy)3 |
Trivialname | tris2-phenylpyridinato-c2niridium(iii) |
Exact mass | 655.15995 |
Molecular formula | C33H24IrN3 |
LogP | n/a |
Has vendors | true |
Molecular role | n/a |
Synonyms | tris2-phenylpyridinato-c2niridium(iii),ir(ppy)3,tris(2-phenylpyridinato)iridium(iii),tris(2-phenylpyridinato)iridium(iii) (purified by sublimation),tris(2-(pyridin-2-yl)phenyl)iridium,tris2-(pyridin-2-yl)phenyliridium,mfcd12022527,fac-tris(2-phenylpyridine)iridium(iii),schembl294298,bcp07959 |
Click here to copy MOL-file.
Click here to show SMILES and InChI.
Molecule is used on following pages
topic
- Photocatalytic CO2 conversion to CO
- Homogeneous photocatalytic CO2 conversion
- Photocatalytic CO2 conversion to HCOOH
- Photocatalytic CO2 conversion to CH4
publication
- Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction
- Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex
- Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy
- Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst
- Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst
- Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis
- Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction
investigation
- Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center/Table 1
- Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction/Photocatalytic CO2 reduction under varied conditions
- Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex/Table 1
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst/Table 1
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst/Table 2 CO gas
- Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis/Photocatalytic reduction of CO2: conditions optimization
- Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy/photocatalytic CO2 conversion under different conditions
- Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst/photocatalytic conversion of CO2 to CO
- Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4/Results for different electron donors and proton donors
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Iron-Catalyzed Photochemical CO2 Reduction under diverse conditions
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Iron-Catalyzed Photochemical CO2 Reduction under diverse conditions error
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 Conversion with Co catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 conversion with Co catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 Co catalyst testing
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/testtest2
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Results obtained with Co2+ catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/results CO2+ experiments
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/CO2+ results from SI
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Results Co2+ experiments taken from SI
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/CO2 Reduction under diverse conditions with diverse sensitizers
other