Molecule:100680: Difference between revisions
From ChemWiki
molecule
(auto-generated) |
(auto-generated) |
||
Line 12: | Line 12: | ||
|moleculeKey=HNVRWFFXWFXICS-UHFFFAOYSA-N | |moleculeKey=HNVRWFFXWFXICS-UHFFFAOYSA-N | ||
|molOrRxn= | |molOrRxn= | ||
-INDIGO- | -INDIGO-02142311402D | ||
0 0 0 0 0 0 0 0 0 0 0 V3000 | 0 0 0 0 0 0 0 0 0 0 0 V3000 | ||
Line 18: | Line 18: | ||
M V30 COUNTS 37 45 0 0 0 | M V30 COUNTS 37 45 0 0 0 | ||
M V30 BEGIN ATOM | M V30 BEGIN ATOM | ||
M V30 1 | M V30 1 N 10.4686 -4.89367 0.0 0 | ||
M V30 2 C | M V30 2 C 9.86013 -3.35178 0.0 0 | ||
M V30 3 C | M V30 3 C 9.7559 -4.32845 0.0 0 | ||
M V30 4 C | M V30 4 C 10.5812 -2.93696 0.0 0 | ||
M V30 5 | M V30 5 C 11.2912 -4.28715 0.0 0 | ||
M V30 6 C 11. | M V30 6 C 11.2672 -3.32813 0.0 0 | ||
M V30 7 | M V30 7 C 11.926 -4.59035 0.0 0 | ||
M V30 8 C | M V30 8 C 13.407 -4.41796 0.0 0 | ||
M V30 9 C | M V30 9 C 12.6927 -4.07702 0.0 0 | ||
M V30 10 C | M V30 10 C 13.4744 -5.24515 0.0 0 | ||
M V30 11 | M V30 11 N 11.9424 -5.66607 0.0 0 | ||
M V30 12 C | M V30 12 C 12.7601 -5.88523 0.0 0 | ||
M V30 13 | M V30 13 N 12.1907 -7.31984 0.0 0 | ||
M V30 14 C | M V30 14 C 13.8922 -7.57782 0.0 0 | ||
M V30 15 C | M V30 15 C 13.0884 -6.97298 0.0 0 | ||
M V30 16 | M V30 16 C 13.8688 -8.43063 0.0 0 | ||
M V30 17 C | M V30 17 C 12.3039 -8.35398 0.0 0 | ||
M V30 18 C | M V30 18 C 13.1498 -8.81725 0.0 0 | ||
M V30 19 C | M V30 19 C 11.6693 -8.71536 0.0 0 | ||
M V30 20 C | M V30 20 C 11.0428 -10.0631 0.0 0 | ||
M V30 21 C | M V30 21 C 11.7283 -9.63489 0.0 0 | ||
M V30 22 | M V30 22 C 10.2824 -9.6709 0.0 0 | ||
M V30 23 | M V30 23 N 10.7291 -8.179 0.0 0 | ||
M V30 24 C | M V30 24 C 10.1211 -8.72059 0.0 0 | ||
M V30 25 C | M V30 25 C 7.40786 -6.05302 0.0 0 | ||
M V30 26 C 7. | M V30 26 C 7.41674 -5.26498 0.0 0 | ||
M V30 27 | M V30 27 C 8.98334 -5.17125 0.0 0 | ||
M V30 28 C | M V30 28 C 8.22399 -6.45531 0.0 0 | ||
M V30 29 | M V30 29 N 9.14653 -5.94372 0.0 0 | ||
M V30 30 C | M V30 30 C 8.17252 -7.17954 0.0 0 | ||
M V30 31 C 8. | M V30 31 C 8.93917 -8.5102 0.0 0 | ||
M V30 32 | M V30 32 N 9.12933 -7.59242 0.0 0 | ||
M V30 33 | M V30 33 C 8.01894 -8.86654 0.0 0 | ||
M V30 34 C | M V30 34 C 7.37472 -7.63591 0.0 0 | ||
M V30 35 C | M V30 35 C 7.32652 -8.42014 0.0 0 | ||
M V30 36 C | M V30 36 C 8.11795 -4.83872 0.0 0 | ||
M V30 37 Ru | M V30 37 Ru 10.613 -6.61608 0.0 0 CHG=2 | ||
M V30 END ATOM | M V30 END ATOM | ||
M V30 BEGIN BOND | M V30 BEGIN BOND | ||
Line 63: | Line 63: | ||
M V30 5 2 5 6 | M V30 5 2 5 6 | ||
M V30 6 1 6 4 | M V30 6 1 6 4 | ||
M V30 7 2 9 7 | M V30 7 1 5 7 | ||
M V30 | M V30 8 2 9 7 | ||
M V30 | M V30 9 2 10 8 | ||
M V30 | M V30 10 1 7 11 | ||
M V30 | M V30 11 1 8 9 | ||
M V30 | M V30 12 2 11 12 | ||
M V30 | M V30 13 1 12 10 | ||
M V30 | M V30 14 2 15 13 | ||
M V30 | M V30 15 2 16 14 | ||
M V30 | M V30 16 1 13 17 | ||
M V30 | M V30 17 1 14 15 | ||
M V30 | M V30 18 2 17 18 | ||
M V30 19 2 21 19 | M V30 19 1 18 16 | ||
M V30 | M V30 20 1 17 19 | ||
M V30 | M V30 21 2 21 19 | ||
M V30 | M V30 22 2 22 20 | ||
M V30 | M V30 23 1 19 23 | ||
M V30 | M V30 24 1 20 21 | ||
M V30 | M V30 25 2 23 24 | ||
M V30 | M V30 26 1 24 22 | ||
M V30 27 2 26 25 | |||
M V30 28 1 25 28 | |||
M V30 29 2 29 | M V30 29 2 28 29 | ||
M V30 30 1 | M V30 30 1 29 27 | ||
M V30 31 | M V30 31 1 28 30 | ||
M V30 32 2 | M V30 32 2 32 30 | ||
M V30 33 | M V30 33 2 33 31 | ||
M V30 34 1 | M V30 34 1 30 34 | ||
M V30 35 | M V30 35 1 31 32 | ||
M V30 36 | M V30 36 2 34 35 | ||
M V30 37 1 | M V30 37 1 35 33 | ||
M V30 38 | M V30 38 2 27 36 | ||
M V30 39 1 | M V30 39 1 36 26 | ||
M V30 40 10 | M V30 40 10 29 37 | ||
M V30 41 10 | M V30 41 10 32 37 | ||
M V30 42 10 | M V30 42 10 23 37 | ||
M V30 43 10 | M V30 43 10 13 37 | ||
M V30 44 10 | M V30 44 10 11 37 | ||
M V30 45 10 | M V30 45 10 1 37 | ||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
|smiles= | |smiles=N12[Ru+2](N3=CC=CC=C3C1=CC=CC=2)1(N2C(C3N1=CC=CC=3)=CC=CC=2)1N2C=CC=CC=2C2=N1C=CC=C2 | ||
|inchi=1S/3C10H8N2.Ru/c3*1-3-7-11-9(5-1)10-6-2-4-8-12-10;/h3*1-8H;/q;;;+2 | |inchi=1S/3C10H8N2.Ru/c3*1-3-7-11-9(5-1)10-6-2-4-8-12-10;/h3*1-8H;/q;;;+2 | ||
|inchikey=HNVRWFFXWFXICS-UHFFFAOYSA-N | |inchikey=HNVRWFFXWFXICS-UHFFFAOYSA-N |
Revision as of 11:43, 14 February 2023
Properties | |
---|---|
CID | 65240 |
CAS | 15158-62-0 |
IUPAC-Name | 2-pyridin-2-ylpyridine;ruthenium(2+) |
Abbreviation | n/a |
Trivialname | tris(22'-bipyridyl)ruthenium(ii) |
Exact mass | 570.110585 |
Molecular formula | C30H24N6Ru+2 |
LogP | n/a |
Has vendors | true |
Molecular role | n/a |
Synonyms | tris(22'-bipyridyl)ruthenium(ii),tris(bipyridine)ruthenium(ii),2-pyridin-2-ylpyridine;ruthenium(2+),tris(22'-bipyridine)ruthenium ii,tris(22'-bipyridine)ruthenium(ii),ru(ii)-tris(bipyridyl),ruthenium ii tris(22'-bipyridine),tris(22/'-bipyridine)ruthenium ii,q27123697,ruthenium(2+) tris(22'-bipyridine-nn')- (oc-6-11)- |
Click here to copy MOL-file.
Click here to show SMILES and InChI.
Molecule is used on following pages
topic
- Photocatalytic CO2 conversion to CO
- Homogeneous photocatalytic CO2 conversion
- Photocatalytic CO2 conversion to HCOOH
publication
- Water-Assisted Highly Efficient Photocatalytic Reduction of CO2 to CO with Noble Metal-Free Bis(terpyridine)iron(II) Complexes and an Organic Photosensitizer
- Photocatalytic CO2 reduction using a Mn complex as a catalyst
- Merging an organic TADF photosensitizer and a simple terpyridine–Fe(iii) complex for photocatalytic CO2 reduction
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction
investigation
- Photocatalytic CO2 reduction using a Mn complex as a catalyst/Photocatalytic CO2 reduction: conditions optimization
- Water-Assisted Highly Efficient Photocatalytic Reduction of CO2 to CO with Noble Metal-Free Bis(terpyridine)iron(II) Complexes and an Organic Photosensitizer/photocatalytic CO2 conversion
- Merging an organic TADF photosensitizer and a simple terpyridine–Fe(iii) complex for photocatalytic CO2 reduction/photocatalytic reduction of CO2 to CO
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Iron-Catalyzed Photochemical CO2 Reduction under diverse conditions
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Iron-Catalyzed Photochemical CO2 Reduction under diverse conditions error
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 Conversion with Co catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 conversion with Co catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 Co catalyst testing
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/testtest2
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Results obtained with Co2+ catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/results CO2+ experiments
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/CO2+ results from SI
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Results Co2+ experiments taken from SI
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/CO2 Reduction under diverse conditions with diverse sensitizers