Molecule:100680: Difference between revisions
From ChemWiki
molecule
(auto-generated) |
(auto-generated) |
||
Line 11: | Line 11: | ||
|moleculeKey=HNVRWFFXWFXICS-UHFFFAOYSA-N | |moleculeKey=HNVRWFFXWFXICS-UHFFFAOYSA-N | ||
|molOrRxn= | |molOrRxn= | ||
-INDIGO- | -INDIGO-02012310412D | ||
0 0 0 0 0 0 0 0 0 0 0 V3000 | 0 0 0 0 0 0 0 0 0 0 0 V3000 | ||
Line 17: | Line 17: | ||
M V30 COUNTS 37 45 0 0 0 | M V30 COUNTS 37 45 0 0 0 | ||
M V30 BEGIN ATOM | M V30 BEGIN ATOM | ||
M V30 1 | M V30 1 C 10.5435 -4.92762 0.0 0 | ||
M V30 2 C | M V30 2 C 11.7491 -4.99092 0.0 0 | ||
M V30 3 C | M V30 3 C 11.2288 -4.73543 0.0 0 | ||
M V30 4 C | M V30 4 C 11.8152 -5.59773 0.0 0 | ||
M V30 5 | M V30 5 N 10.1065 -5.76474 0.0 0 | ||
M V30 6 C 11. | M V30 6 C 11.152 -6.14351 0.0 0 | ||
M V30 7 | M V30 7 N 9.25866 -4.63911 0.0 0 | ||
M V30 8 C | M V30 8 C 9.63235 -3.30328 0.0 0 | ||
M V30 9 C | M V30 9 C 9.14128 -3.93512 0.0 0 | ||
M V30 10 C | M V30 10 C 10.2777 -3.25752 0.0 0 | ||
M V30 11 | M V30 11 C 10.2001 -4.55637 0.0 0 | ||
M V30 12 C | M V30 12 C 10.6339 -3.773 0.0 0 | ||
M V30 13 | M V30 13 C 5.94213 -3.03516 0.0 0 | ||
M V30 14 C | M V30 14 C 7.24168 -3.49305 0.0 0 | ||
M V30 15 C | M V30 15 C 6.59328 -2.8886 0.0 0 | ||
M V30 16 | M V30 16 N 7.04427 -4.43995 0.0 0 | ||
M V30 17 C | M V30 17 C 5.69026 -3.59788 0.0 0 | ||
M V30 18 C | M V30 18 C 6.01761 -4.2224 0.0 0 | ||
M V30 19 C | M V30 19 C 4.16032 -4.25649 0.0 0 | ||
M V30 20 C | M V30 20 C 5.64012 -4.58942 0.0 0 | ||
M V30 21 C | M V30 21 C 4.8164 -4.06601 0.0 0 | ||
M V30 22 | M V30 22 N 5.79253 -5.37659 0.0 0 | ||
M V30 23 | M V30 23 C 3.99774 -4.91039 0.0 0 | ||
M V30 24 C | M V30 24 C 4.6602 -5.58382 0.0 0 | ||
M V30 25 C | M V30 25 C 5.61199 -8.17009 0.0 0 | ||
M V30 26 C 7. | M V30 26 C 7.22575 -8.54472 0.0 0 | ||
M V30 27 | M V30 27 N 6.81042 -7.59487 0.0 0 | ||
M V30 28 C | M V30 28 C 7.08099 -9.28642 0.0 0 | ||
M V30 29 | M V30 29 C 5.63354 -9.26837 0.0 0 | ||
M V30 30 C | M V30 30 C 6.38037 -9.63065 0.0 0 | ||
M V30 31 C 8. | M V30 31 C 8.04784 -8.35665 0.0 0 | ||
M V30 32 | M V30 32 C 9.63143 -8.08568 0.0 0 | ||
M V30 33 | M V30 33 N 8.65644 -7.66877 0.0 0 | ||
M V30 34 C | M V30 34 C 9.74901 -9.15397 0.0 0 | ||
M V30 35 C | M V30 35 C 8.28703 -9.41911 0.0 0 | ||
M V30 36 C | M V30 36 C 9.08273 -9.6819 0.0 0 | ||
M V30 37 Ru | M V30 37 Ru 7.90443 -6.04653 0.0 0 CHG=2 | ||
M V30 END ATOM | M V30 END ATOM | ||
M V30 BEGIN BOND | M V30 BEGIN BOND | ||
Line 62: | Line 62: | ||
M V30 5 2 5 6 | M V30 5 2 5 6 | ||
M V30 6 1 6 4 | M V30 6 1 6 4 | ||
M V30 7 | M V30 7 2 9 7 | ||
M V30 8 2 10 8 | |||
M V30 | M V30 9 1 7 11 | ||
M V30 | M V30 10 1 8 9 | ||
M V30 | M V30 11 2 11 12 | ||
M V30 | M V30 12 1 12 10 | ||
M V30 | M V30 13 2 15 13 | ||
M V30 | M V30 14 2 16 14 | ||
M V30 | M V30 15 1 13 17 | ||
M V30 | M V30 16 1 14 15 | ||
M V30 | M V30 17 2 17 18 | ||
M V30 | M V30 18 1 18 16 | ||
M V30 | M V30 19 2 21 19 | ||
M V30 | M V30 20 2 22 20 | ||
M V30 21 1 19 23 | |||
M V30 | M V30 22 1 20 21 | ||
M V30 | M V30 23 2 23 24 | ||
M V30 | M V30 24 1 24 22 | ||
M V30 | M V30 25 2 27 25 | ||
M V30 | M V30 26 2 28 26 | ||
M V30 27 2 26 25 | M V30 27 1 25 29 | ||
M V30 28 1 | M V30 28 1 26 27 | ||
M V30 29 2 | M V30 29 2 29 30 | ||
M V30 30 1 | M V30 30 1 30 28 | ||
M V30 31 | M V30 31 2 33 31 | ||
M V30 32 2 32 | M V30 32 2 34 32 | ||
M V30 33 | M V30 33 1 31 35 | ||
M V30 34 1 | M V30 34 1 32 33 | ||
M V30 35 | M V30 35 2 35 36 | ||
M V30 36 | M V30 36 1 36 34 | ||
M V30 37 1 | M V30 37 1 26 31 | ||
M V30 38 | M V30 38 1 20 18 | ||
M V30 39 1 | M V30 39 1 11 1 | ||
M V30 40 10 | M V30 40 10 16 37 | ||
M V30 41 10 | M V30 41 10 22 37 | ||
M V30 42 10 | M V30 42 10 27 37 | ||
M V30 43 10 | M V30 43 10 33 37 | ||
M V30 44 10 | M V30 44 10 5 37 | ||
M V30 45 10 | M V30 45 10 7 37 | ||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
|smiles=C12C3=CC=CC=N3[Ru+2](N1=CC=CC=2)1(N2C=CC=CC=2C2N1=CC=CC=2)1N2C=CC=CC=2C2N1=CC=CC=2 | |||
|smiles= | |||
|inchi=1S/3C10H8N2.Ru/c3*1-3-7-11-9(5-1)10-6-2-4-8-12-10;/h3*1-8H;/q;;;+2 | |inchi=1S/3C10H8N2.Ru/c3*1-3-7-11-9(5-1)10-6-2-4-8-12-10;/h3*1-8H;/q;;;+2 | ||
|inchikey=HNVRWFFXWFXICS-UHFFFAOYSA-N | |inchikey=HNVRWFFXWFXICS-UHFFFAOYSA-N |
Revision as of 09:45, 7 July 2023
Properties | |
---|---|
CID | 65240 |
CAS | 15158-62-0 |
IUPAC-Name | 2-pyridin-2-ylpyridine;ruthenium(2+) |
Abbreviation | Ru(bpy)3 |
Trivialname | tris(22'-bipyridyl)ruthenium(ii) |
Exact mass | 570.110585 |
Molecular formula | C30H24N6Ru+2 |
LogP | n/a |
Has vendors | true |
Molecular role | n/a |
Synonyms | tris(22'-bipyridyl)ruthenium(ii),tris(bipyridine)ruthenium(ii),2-pyridin-2-ylpyridine;ruthenium(2+),tris(22'-bipyridine)ruthenium ii,tris(22'-bipyridine)ruthenium(ii),ru(ii)-tris(bipyridyl),ruthenium ii tris(22'-bipyridine),tris(22/'-bipyridine)ruthenium ii,q27123697,ruthenium(2+) tris(22'-bipyridine-nn')- (oc-6-11)- |
Click here to copy MOL-file.
Click here to show SMILES and InChI.
Molecule is used on following pages
topic
- Photocatalytic CO2 conversion to CO
- Homogeneous photocatalytic CO2 conversion
- Photocatalytic CO2 conversion to HCOOH
publication
- Water-Assisted Highly Efficient Photocatalytic Reduction of CO2 to CO with Noble Metal-Free Bis(terpyridine)iron(II) Complexes and an Organic Photosensitizer
- Photocatalytic CO2 reduction using a Mn complex as a catalyst
- Merging an organic TADF photosensitizer and a simple terpyridine–Fe(iii) complex for photocatalytic CO2 reduction
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction
investigation
- Photocatalytic CO2 reduction using a Mn complex as a catalyst/Photocatalytic CO2 reduction: conditions optimization
- Water-Assisted Highly Efficient Photocatalytic Reduction of CO2 to CO with Noble Metal-Free Bis(terpyridine)iron(II) Complexes and an Organic Photosensitizer/photocatalytic CO2 conversion
- Merging an organic TADF photosensitizer and a simple terpyridine–Fe(iii) complex for photocatalytic CO2 reduction/photocatalytic reduction of CO2 to CO
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Iron-Catalyzed Photochemical CO2 Reduction under diverse conditions
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Iron-Catalyzed Photochemical CO2 Reduction under diverse conditions error
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 Conversion with Co catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 conversion with Co catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Table 2 Co catalyst testing
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/testtest2
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Results obtained with Co2+ catalyst
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/results CO2+ experiments
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/CO2+ results from SI
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/Results Co2+ experiments taken from SI
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction/CO2 Reduction under diverse conditions with diverse sensitizers