Editing Category:Homogeneous photocatalytic CO2 conversion
From ChemWiki
Revision as of 14:22, 5 July 2024 by 172.25.219.238 (talk) (→Summary of selected scientific progress)
topic
Jump to:navigation, search
Warning: You are editing an out-of-date revision of this page. If you publish it, any changes made since this revision will be lost.
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.
Retrieved from "https://chemwiki.scc.kit.edu/main/mediawiki/Category:Homogeneous_photocatalytic_CO2_conversion"
topic
publication
investigation
molecule
Topics
no subcategories
no subcategories
no subcategories
no subcategories
- A Cu(I) Co(II) cryptate for the visible light-driven reduction of CO2
- A Dinuclear Cobalt Cryptate as a Homogeneous Photocatalyst for Highly Selective and Efficient Visible-Light Driven CO2 Reduction to CO in CH3CN-H2O Solution
- An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2
- Carbon dioxide reduction via light activation of a ruthenium–Ni(cyclam) complex
- Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction
- Exploring the Full Potential of Photocatalytic Carbon Dioxide Reduction Using a Dinuclear Re2Cl2 Complex Assisted by Various Photosensitizers
- Function-Integrated Ru Catalyst for Photochemical CO2 Reduction
- Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts
- Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes
- Highly efficient and selective visible-light driven CO2-to-CO conversion by a Co-based cryptate in H2O-CH3CN solution
- Ir(tpy)(bpy)Cl as a Photocatalyst for CO2 Reduction under Visible-Light Irradiation
- Light-Driven Reduction of CO2 to CO in Water with a Cobalt Molecular Catalyst and an Organic Sensitizer
- Merging an organic TADF photosensitizer and a simple terpyridine–Fe(iii) complex for photocatalytic CO2 reduction
- Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy
- Mn-carbonyl molecular catalysts containing a redox-active phenanthroline-5,6-dione for selective electro- and photoreduction of CO2 to CO or HCOOH
- Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center
- New Photosensitizers Based on Heteroleptic Cu(I) Complexes and CO2 Photocatalytic Reduction with (Ni(II)(cyclam))Cl2
- Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction
- Phenoxazine-Sensitized CO2-to-CO Reduction with an Iron Porphyrin Catalyst: A Redox Properties-Catalytic Performance Study
- Photocatalytic CO2 Reduction Mediated by Electron Transfer via the Excited Triplet State of Zn(II) Porphyrin
- Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid
- Photocatalytic CO2 Reduction under Visible-Light Irradiation by Ruthenium CNC Pincer Complexes
- Photocatalytic CO2 reduction using a Mn complex as a catalyst
- Photocatalytic CO2 reduction with aminoanthraquinone organic dyes
- Photocatalytic Carbon Dioxide Reduction Using Nickel Complexes as Catalysts
- Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues.
- Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3
- Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light
- Photochemical reduction of carbon dioxide to formic acid
- Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore
- Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction
- Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction
- Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst
- Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis
- Visible light driven reduction of CO2 catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer
- Visible-Light Photocatalytic Conversion of Carbon Dioxide by Ni(II) Complexes with N4S2 Coordination: Highly Efficient and Selective Production of Formate
- Visible-Light Photocatalytic Reduction of CO2 to Formic Acid with a Ru Catalyst Supported by N,N’- Bis(diphenylphosphino)-2,6-diaminopyridine Ligands
- Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex
- Visible-Light-Driven Conversion of CO2 to CH4 with an Organic Sensitizer and an Iron Porphyrin Catalyst
- Visible-Light-Driven Photocatalytic CO2 Reduction by a Ni(II) Complex Bearing a Bioinspired Tetradentate Ligand for Selective CO Production
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst
- Water-Assisted Highly Efficient Photocatalytic Reduction of CO2 to CO with Noble Metal-Free Bis(terpyridine)iron(II) Complexes and an Organic Photosensitizer
- Photocatalytic reduction of CO2 (A Cu(I) Co(II) cryptate for the visible light-driven reduction of CO2)
- Best result and control experiments (A Dinuclear Cobalt Cryptate as a Homogeneous Photocatalyst for Highly Selective and Efficient Visible-Light Driven CO2 Reduction to CO in CH3CN-H2O Solution)
- Table 2 (A Dinuclear Cobalt Cryptate as a Homogeneous Photocatalyst for Highly Selective and Efficient Visible-Light Driven CO2 Reduction to CO in CH3CN-H2O Solution)
- Effect of proton donor (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Solvent effect study between DMA DMF and acetonitrile (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Study on the concentration of catalyst (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Table 1 (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Time profile in DMF (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Photoreduction of CO2 result (Carbon dioxide reduction via light activation of a ruthenium–Ni(cyclam) complex)
- Table 1 (Carbon dioxide reduction via light activation of a ruthenium–Ni(cyclam) complex)
- Results for different electron donors and proton donors (Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4)
- Table 1 (Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4)
- CO2 Reduction under diverse conditions with diverse sensitizers (Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction)
- Iron-Catalyzed Photochemical CO2 Reduction under diverse conditions (Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction)
- Iron-Catalyzed Photochemical CO2 Reduction under diverse conditions error (Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction)
- Table 2 Co catalyst testing (Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction)
- Table 2 Conversion with Co catalyst (Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction)
- Table 2 conversion with Co catalyst (Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction)
- testtest2 (Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction)
- Optimizations of the conditions (Exploring the Full Potential of Photocatalytic Carbon Dioxide Reduction Using a Dinuclear Re2Cl2 Complex Assisted by Various Photosensitizers)
- Table 1 (Exploring the Full Potential of Photocatalytic Carbon Dioxide Reduction Using a Dinuclear Re2Cl2 Complex Assisted by Various Photosensitizers)
- Concentration and solvent effect (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Control experiments (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Hg poisoning (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Maximum TON (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Presence of water effect (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Table 1 (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Durability test (Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts)
- Results for photocatalytic reduction of CO2 (Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts)
- Table 1 (Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts)
- Co(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2 (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Co(qpy)(H2O)2(ClO4)2 and purpurin (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Fe(qpy)(H2O)2(ClO4)2 (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Fe(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2 (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Optimizations of conditions for Co(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2 (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Optimizations of conditions for Co(qpy)(H2O)2(ClO4)2 and purpurin (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Optimizations of conditions for Fe(qpy)(H2O)2(ClO4)2 (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- Optimizations of conditions for Fe(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2 (Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes)
- photocatalytic CO2 conversion under different conditions (Highly efficient and selective visible-light driven CO2-to-CO conversion by a Co-based cryptate in H2O-CH3CN solution)
- Photoreduction of CO2 (Ir(tpy)(bpy)Cl as a Photocatalyst for CO2 Reduction under Visible-Light Irradiation)
- Table 1 (Ir(tpy)(bpy)Cl as a Photocatalyst for CO2 Reduction under Visible-Light Irradiation)
- Photocatalytic CO2 Reduction by 1 (2 μM) in CO2-Saturated Aqueous CH3CN Solutions (Light-Driven Reduction of CO2 to CO in Water with a Cobalt Molecular Catalyst and an Organic Sensitizer)
- BIH + TEOA under Various Conditions (Light-Driven Reduction of CO2 to CO in Water with a Cobalt Molecular Catalyst and an Organic Sensitizer/Visible-Light Driven CO2 Reduction with 1/TATA+)
- photocatalytic reduction of CO2 to CO (Merging an organic TADF photosensitizer and a simple terpyridine–Fe(iii) complex for photocatalytic CO2 reduction)
- photocatalytic CO2 conversion under different conditions (Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy)
- Table 1 (Mn-carbonyl molecular catalysts containing a redox-active phenanthroline-5,6-dione for selective electro- and photoreduction of CO2 to CO or HCOOH)
- Table 1 (Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center)
- Photocatalytic CO2 reduction and control experiments (New Photosensitizers Based on Heteroleptic Cu(I) Complexes and CO2 Photocatalytic Reduction with (Ni(II)(cyclam))Cl2)
- Photocatalytic CO2 reduction under varied conditions (Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction)
- Table 1 (Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction)
- Table 1 (Phenoxazine-Sensitized CO2-to-CO Reduction with an Iron Porphyrin Catalyst: A Redox Properties-Catalytic Performance Study)
- photocatalytic CO2 conversion (Photocatalytic CO2 Reduction Mediated by Electron Transfer via the Excited Triplet State of Zn(II) Porphyrin)
- Control experiments (Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid)
- Photocatalytic reduction of CO2, best TON (Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid)
- Table 1 (Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid)
- Conditions optimizations for photocatalytic reduction of CO2 (Photocatalytic CO2 Reduction under Visible-Light Irradiation by Ruthenium CNC Pincer Complexes)
- Table 1 (Photocatalytic CO2 Reduction under Visible-Light Irradiation by Ruthenium CNC Pincer Complexes)
- Photocatalytic CO2 reduction: conditions optimization (Photocatalytic CO2 reduction using a Mn complex as a catalyst)
- Photocatalytic CO2 reduction: conditions optimizations (Photocatalytic CO2 reduction using a Mn complex as a catalyst)
- Table1 (Photocatalytic CO2 reduction using a Mn complex as a catalyst)
- Photocatalytic CO2 reduction with varying concentrations of cat and PS (Photocatalytic CO2 reduction with aminoanthraquinone organic dyes)
- Photocatalytic reduction of CO2 with different photosensitizers (Photocatalytic CO2 reduction with aminoanthraquinone organic dyes)
- CO2 reduction experiments testing different catalysts (Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues.)
- CO2 reduction experiments with different catalysts (Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues.)
- Optimization of CO2 reduction conditions (Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues.)
- Table 1 (Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3)
- Table 2 (Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3)
- CO2 reduction experiments (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Optimization of concentrations (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Table 1 (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Table 2 (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Table 3 - CV (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Control experiments (Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore)
- Photocatalytic CO2 reduction: best results (Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore)
- Table 1 (Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore)
- Table 1 (Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction)
- Table 1 (Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction)
- Table 2 (Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction)
- photocatalytic conversion of CO2 to CO (Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst)
- Cyclic voltammetry in various conditions (Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis)
- Photocatalytic reduction of CO2: conditions optimization (Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis)
- Table 1 (Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis)
- Table 2 - CV (Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis)
- Photocatalytic reduction of CO (Visible-Light-Driven Conversion of CO2 to CH4 with an Organic Sensitizer and an Iron Porphyrin Catalyst)
- Photocatalytic reduction of CO2 (Visible-Light-Driven Conversion of CO2 to CH4 with an Organic Sensitizer and an Iron Porphyrin Catalyst)
- Table 1 (Visible-Light-Driven Conversion of CO2 to CH4 with an Organic Sensitizer and an Iron Porphyrin Catalyst)
- Table 1 (Visible-Light-Driven Photocatalytic CO2 Reduction by a Ni(II) Complex Bearing a Bioinspired Tetradentate Ligand for Selective CO Production)
- Table 1 (Visible-Light Photocatalytic Conversion of Carbon Dioxide by Ni(II) Complexes with N4S2 Coordination: Highly Efficient and Selective Production of Formate)
- Table 1 (Visible-Light Photocatalytic Reduction of CO2 to Formic Acid with a Ru Catalyst Supported by N,N’- Bis(diphenylphosphino)-2,6-diaminopyridine Ligands)
- Table 1 (Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex)
- Table 1 (Visible-light-driven methane formation from CO2 with a molecular iron catalyst)
- Table 2 CO gas (Visible-light-driven methane formation from CO2 with a molecular iron catalyst)
- Table 1 (Visible light driven reduction of CO2 catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer)
- photocatalytic CO2 conversion (Water-Assisted Highly Efficient Photocatalytic Reduction of CO2 to CO with Noble Metal-Free Bis(terpyridine)iron(II) Complexes and an Organic Photosensitizer)
Navigation