(auto-generated) |
m (auto-updated mass/formula) |
||
Line 3: | Line 3: | ||
|trivialname= | |trivialname= | ||
|abbrev= | |abbrev= | ||
|molecularFormula= | |molecularFormula=C<sub>63</sub>H<sub>54</sub>Co<sub>2</sub>N<sub>8</sub>O | ||
|hasVendors= | |hasVendors= | ||
|moleculeKey=BRMPVISUICHJBY-UHFFFAOYSA-N | |moleculeKey=BRMPVISUICHJBY-UHFFFAOYSA-N | ||
Line 189: | Line 189: | ||
|float=none | |float=none | ||
|parent= | |parent= | ||
|molecularMass=1056.308448348 | |||
}} | }} |
Revision as of 15:10, 16 March 2023
Properties | |
---|---|
CID | n/a |
CAS | n/a |
IUPAC-Name | n/a |
Abbreviation | n/a |
Trivialname | n/a |
Exact mass | 1056.308448348 |
Molecular formula | C63H54Co2N8O |
LogP | n/a |
Has vendors | n/a |
Molecular role | n/a |
Synonyms | n/a |
Click here to copy MOL-file.
Click here to show SMILES and InChI.
InChI | 1S/C63H54N8O.2Co/c1-61(2,3)41-35-43(39-27-31-66-57(33-39)55-25-15-23-53(70-55)51-21-13-19-49(68-51)47-17-9-11-29-64-47)59-45(37-41)63(7,8)46-38-42(62(4,5)6)36-44(60(46)72-59)40-28-32-67-58(34-40)56-26-16-24-54(71-56)52-22-14-20-50(69-52)48-18-10-12-30-65-48;;/h9-38H,1-8H3;; |
InChI-Key | BRMPVISUICHJBY-UHFFFAOYSA-N |
SMILES | C12C(C)(C)C3C=C(C(C)(C)C)C=C(C4C=C5C6C=CC=C7C8C=CC=C9C%10C=CC=CN=%10[Co](N=89)(N=67)N5=CC=4)C=3OC1=C(C1C=CN3[Co]45N6=CC=CC=C6C6C=CC=C(N=64)C4C=CC=C(N=45)C=3C=1)C=C(C(C)(C)C)C=2 |
Retrieved from "https://chemwiki.scc.kit.edu/main/mediawiki/index.php?title=Molecule:100492&oldid=2963"
topic
publication
investigation
molecule
Topics
- A Cu(I) Co(II) cryptate for the visible light-driven reduction of CO2
- A Dinuclear Cobalt Cryptate as a Homogeneous Photocatalyst for Highly Selective and Efficient Visible-Light Driven CO2 Reduction to CO in CH3CN-H2O Solution
- An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2
- Carbon dioxide reduction via light activation of a ruthenium–Ni(cyclam) complex
- Durable Solar-Powered Systems with Ni-Catalysts for Conversion of CO2 or CO to CH4
- Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction
- Exploring the Full Potential of Photocatalytic Carbon Dioxide Reduction Using a Dinuclear Re2Cl2 Complex Assisted by Various Photosensitizers
- Function-Integrated Ru Catalyst for Photochemical CO2 Reduction
- Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts
- Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes
- Highly efficient and selective visible-light driven CO2-to-CO conversion by a Co-based cryptate in H2O-CH3CN solution
- Ir(tpy)(bpy)Cl as a Photocatalyst for CO2 Reduction under Visible-Light Irradiation
- Light-Driven Reduction of CO2 to CO in Water with a Cobalt Molecular Catalyst and an Organic Sensitizer
- Merging an organic TADF photosensitizer and a simple terpyridine–Fe(iii) complex for photocatalytic CO2 reduction
- Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy
- Mn-carbonyl molecular catalysts containing a redox-active phenanthroline-5,6-dione for selective electro- and photoreduction of CO2 to CO or HCOOH
- Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center
- New Photosensitizers Based on Heteroleptic Cu(I) Complexes and CO2 Photocatalytic Reduction with (Ni(II)(cyclam))Cl2
- Nickel(II) pincer complexes demonstrate that the remote substituent controls catalytic carbon dioxide reduction
- Phenoxazine-Sensitized CO2-to-CO Reduction with an Iron Porphyrin Catalyst: A Redox Properties-Catalytic Performance Study
- Photocatalytic CO2 Reduction Mediated by Electron Transfer via the Excited Triplet State of Zn(II) Porphyrin
- Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid
- Photocatalytic CO2 Reduction under Visible-Light Irradiation by Ruthenium CNC Pincer Complexes
- Photocatalytic CO2 reduction using a Mn complex as a catalyst
- Photocatalytic CO2 reduction with aminoanthraquinone organic dyes
- Photocatalytic Carbon Dioxide Reduction Using Nickel Complexes as Catalysts
- Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues.
- Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3
- Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light
- Photochemical reduction of carbon dioxide to formic acid
- Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore
- Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction
- Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction
- Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst
- Toward Visible-Light Photochemical CO2‑to-CH4 Conversion in Aqueous Solutions Using Sensitized Molecular Catalysis
- Visible light driven reduction of CO2 catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer
- Visible-Light Photocatalytic Conversion of Carbon Dioxide by Ni(II) Complexes with N4S2 Coordination: Highly Efficient and Selective Production of Formate
- Visible-Light Photocatalytic Reduction of CO2 to Formic Acid with a Ru Catalyst Supported by N,N’- Bis(diphenylphosphino)-2,6-diaminopyridine Ligands
- Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex
- Visible-Light-Driven Conversion of CO2 to CH4 with an Organic Sensitizer and an Iron Porphyrin Catalyst
- Visible-Light-Driven Photocatalytic CO2 Reduction by a Ni(II) Complex Bearing a Bioinspired Tetradentate Ligand for Selective CO Production
- Visible-light-driven methane formation from CO2 with a molecular iron catalyst
- Water-Assisted Highly Efficient Photocatalytic Reduction of CO2 to CO with Noble Metal-Free Bis(terpyridine)iron(II) Complexes and an Organic Photosensitizer
none
Navigation