Information for "Category:Photocatalytic CO2 conversion to HCOOH"
From ChemWiki
topic
Jump to:navigation, search
Basic information
Display title | Photocatalytic CO2 conversion to HCOOH |
Default sort key | Photocatalytic CO2 conversion to HCOOH |
Page length (in bytes) | 12,984 |
Namespace | Category |
Page ID | 1038 |
Page content language | en - English |
Page content model | wikitext |
Indexing by robots | Allowed |
Number of redirects to this page | 0 |
Category information
Total number of members | 18 |
Number of pages | 18 |
Number of subcategories | 0 |
Number of files | 0 |
Page protection
Edit | Allow all users (infinite) |
Move | Allow all users (infinite) |
Edit history
Page creator | ChN (talk | contribs) |
Date of page creation | 10:38, 8 December 2022 |
Latest editor | Victor.larignon (talk | contribs) |
Date of latest edit | 14:12, 18 October 2024 |
Total number of edits | 29 |
Total number of distinct authors | 5 |
Recent number of edits (within past 90 days) | 7 |
Recent number of distinct authors | 1 |
Page properties
Magic word (1) |
|
Transcluded template (1) | Template used on this page: |
Retrieved from "https://chemwiki.scc.kit.edu/main/mediawiki/Category:Photocatalytic_CO2_conversion_to_HCOOH"
topic
publication
investigation
molecule
Current site
Topics
no subcategories
no subcategories
no subcategories
- An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2
- Function-Integrated Ru Catalyst for Photochemical CO2 Reduction
- Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts
- Ir(tpy)(bpy)Cl as a Photocatalyst for CO2 Reduction under Visible-Light Irradiation
- Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy
- Mn-carbonyl molecular catalysts containing a redox-active phenanthroline-5,6-dione for selective electro- and photoreduction of CO2 to CO or HCOOH
- Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center
- Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid
- Photocatalytic CO2 Reduction under Visible-Light Irradiation by Ruthenium CNC Pincer Complexes
- Photocatalytic CO2 reduction using a Mn complex as a catalyst
- Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3
- Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light
- Photochemical reduction of carbon dioxide to formic acid
- Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction
- Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction
- Visible light driven reduction of CO2 catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer
- Visible-Light Photocatalytic Conversion of Carbon Dioxide by Ni(II) Complexes with N4S2 Coordination: Highly Efficient and Selective Production of Formate
- Visible-Light Photocatalytic Reduction of CO2 to Formic Acid with a Ru Catalyst Supported by N,N’- Bis(diphenylphosphino)-2,6-diaminopyridine Ligands
- Effect of proton donor (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Solvent effect study between DMA DMF and acetonitrile (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Study on the concentration of catalyst (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Table 1 (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Time profile in DMF (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Concentration and solvent effect (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Control experiments (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Hg poisoning (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Maximum TON (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Presence of water effect (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Table 1 (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Durability test (Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts)
- Results for photocatalytic reduction of CO2 (Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts)
- Table 1 (Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts)
- Photoreduction of CO2 (Ir(tpy)(bpy)Cl as a Photocatalyst for CO2 Reduction under Visible-Light Irradiation)
- Table 1 (Ir(tpy)(bpy)Cl as a Photocatalyst for CO2 Reduction under Visible-Light Irradiation)
- photocatalytic CO2 conversion under different conditions (Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy)
- Table 1 (Mn-carbonyl molecular catalysts containing a redox-active phenanthroline-5,6-dione for selective electro- and photoreduction of CO2 to CO or HCOOH)
- Table 1 (Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center)
- Control experiments (Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid)
- Photocatalytic reduction of CO2, best TON (Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid)
- Table 1 (Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid)
- Conditions optimizations for photocatalytic reduction of CO2 (Photocatalytic CO2 Reduction under Visible-Light Irradiation by Ruthenium CNC Pincer Complexes)
- Table 1 (Photocatalytic CO2 Reduction under Visible-Light Irradiation by Ruthenium CNC Pincer Complexes)
- Photocatalytic CO2 reduction: conditions optimization (Photocatalytic CO2 reduction using a Mn complex as a catalyst)
- Photocatalytic CO2 reduction: conditions optimizations (Photocatalytic CO2 reduction using a Mn complex as a catalyst)
- Table1 (Photocatalytic CO2 reduction using a Mn complex as a catalyst)
- Table 1 (Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3)
- Table 2 (Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3)
- CO2 reduction experiments (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Optimization of concentrations (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Table 1 (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Table 2 (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Table 3 - CV (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Table 1 (Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction)
- Table 1 (Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction)
- Table 2 (Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction)
- Table 1 (Visible-Light Photocatalytic Conversion of Carbon Dioxide by Ni(II) Complexes with N4S2 Coordination: Highly Efficient and Selective Production of Formate)
- Table 1 (Visible-Light Photocatalytic Reduction of CO2 to Formic Acid with a Ru Catalyst Supported by N,N’- Bis(diphenylphosphino)-2,6-diaminopyridine Ligands)
- Table 1 (Visible light driven reduction of CO2 catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer)
Navigation