Editing Category:Photocatalytic CO2 conversion to HCOOH
From ChemWiki
topic
Jump to:navigation, search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.
Retrieved from "https://chemwiki.scc.kit.edu/main/mediawiki/Category:Photocatalytic_CO2_conversion_to_HCOOH"
topic
publication
investigation
molecule
Current site
Topics
no subcategories
no subcategories
no subcategories
- An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2
- Function-Integrated Ru Catalyst for Photochemical CO2 Reduction
- Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts
- Ir(tpy)(bpy)Cl as a Photocatalyst for CO2 Reduction under Visible-Light Irradiation
- Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy
- Mn-carbonyl molecular catalysts containing a redox-active phenanthroline-5,6-dione for selective electro- and photoreduction of CO2 to CO or HCOOH
- Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center
- Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid
- Photocatalytic CO2 Reduction under Visible-Light Irradiation by Ruthenium CNC Pincer Complexes
- Photocatalytic CO2 reduction using a Mn complex as a catalyst
- Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3
- Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light
- Photochemical reduction of carbon dioxide to formic acid
- Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction
- Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction
- Visible light driven reduction of CO2 catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer
- Visible-Light Photocatalytic Conversion of Carbon Dioxide by Ni(II) Complexes with N4S2 Coordination: Highly Efficient and Selective Production of Formate
- Visible-Light Photocatalytic Reduction of CO2 to Formic Acid with a Ru Catalyst Supported by N,Nβ- Bis(diphenylphosphino)-2,6-diaminopyridine Ligands
- Effect of proton donor (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Solvent effect study between DMA DMF and acetonitrile (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Study on the concentration of catalyst (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Table 1 (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Time profile in DMF (An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2)
- Concentration and solvent effect (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Control experiments (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Hg poisoning (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Maximum TON (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Presence of water effect (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Table 1 (Function-Integrated Ru Catalyst for Photochemical CO2 Reduction)
- Durability test (Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts)
- Results for photocatalytic reduction of CO2 (Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts)
- Table 1 (Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts)
- Photoreduction of CO2 (Ir(tpy)(bpy)Cl as a Photocatalyst for CO2 Reduction under Visible-Light Irradiation)
- Table 1 (Ir(tpy)(bpy)Cl as a Photocatalyst for CO2 Reduction under Visible-Light Irradiation)
- photocatalytic CO2 conversion under different conditions (Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy)
- Table 1 (Mn-carbonyl molecular catalysts containing a redox-active phenanthroline-5,6-dione for selective electro- and photoreduction of CO2 to CO or HCOOH)
- Table 1 (Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center)
- Control experiments (Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid)
- Photocatalytic reduction of CO2, best TON (Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid)
- Table 1 (Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid)
- Conditions optimizations for photocatalytic reduction of CO2 (Photocatalytic CO2 Reduction under Visible-Light Irradiation by Ruthenium CNC Pincer Complexes)
- Table 1 (Photocatalytic CO2 Reduction under Visible-Light Irradiation by Ruthenium CNC Pincer Complexes)
- Photocatalytic CO2 reduction: conditions optimization (Photocatalytic CO2 reduction using a Mn complex as a catalyst)
- Photocatalytic CO2 reduction: conditions optimizations (Photocatalytic CO2 reduction using a Mn complex as a catalyst)
- Table1 (Photocatalytic CO2 reduction using a Mn complex as a catalyst)
- Table 1 (Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3)
- Table 2 (Photocatalytic Reduction of Carbon Dioxide to CO and HCO2H Using fac-Mn(CN)(bpy)(CO)3)
- CO2 reduction experiments (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Optimization of concentrations (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Table 1 (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Table 2 (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Table 3 - CV (Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light)
- Table 1 (Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction)
- Table 1 (Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction)
- Table 2 (Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction)
- Table 1 (Visible-Light Photocatalytic Conversion of Carbon Dioxide by Ni(II) Complexes with N4S2 Coordination: Highly Efficient and Selective Production of Formate)
- Table 1 (Visible-Light Photocatalytic Reduction of CO2 to Formic Acid with a Ru Catalyst Supported by N,Nβ- Bis(diphenylphosphino)-2,6-diaminopyridine Ligands)
- Table 1 (Visible light driven reduction of CO2 catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer)
Navigation