Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst: Difference between revisions
About |
---|
(auto-generated) |
mNo edit summary |
||
(8 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
[[Category:Photocatalytic CO2 conversion to CO]][[Category:Publication]] | [[Category:Photocatalytic CO2 conversion to CO]][[Category:Publication]] | ||
{{BaseTemplate}} | {{BaseTemplate}} | ||
===Abstract=== | |||
====Summary==== | |||
The photochemical reduction of CO<sub>2</sub> to CO was shown using the iron complex {{#moleculelink:|link=JQYRTQVHCKLBTL-YQGGSDPOSA-M|image=false|width=300|height=200}} in combination with the photosensitizers {{#moleculelink:|link=NSABRUJKERBGOU-UHFFFAOYSA-N|image=false|width=300|height=200}} or {{#moleculelink:|link=KEQZHLAEKAVZLY-UHFFFAOYSA-N|image=false|width=300|height=200}}. Turnover numbers (TONs) of up to 140 and a selectivity of 93% for CO were reached in acetonitrile after 55 h of irradiation. The experiments were conducted under visible-light irradiation (λ > 400 nm) with TEA (see section SEDs below) as sacrificial electron donor. | |||
====Advances and special progress==== | |||
The authors reported one of the highest TONs in homogeneous photocatalysis at that time in this study without detecting significant degradation of the catalyst or sensitizer. In addition, they reported the use of a cheap organic photosensitizer for CO<sub>2</sub> conversion with a slightly lower TON (60), but higher selectivity (100%). | |||
====Additional remarks==== | |||
===Content of the published article in detail=== | |||
The article contains results of a study for the reduction of CO<sub>2</sub> to CO using an iron complex and an iridium-based or organic photosensitizer. The catalytic system performs best (referring to the TON of CO production) in acetonitrile with photosensitizer {{#moleculelink:|link=NSABRUJKERBGOU-UHFFFAOYSA-N|image=false|width=300|height=200}}. | |||
====Catalyst==== | |||
<chemform smiles="C1C2C(C3C(O)=CC=CC=3O)=C3N4[Fe](Cl)56~N7C(=C(C8C(O)=CC=CC=8O)C8N5C(C(C5C(O)=CC=CC=5O)=C(N=2~6)C=1)=CC=8)C=CC=7C(=C4C=C3)C1C(O)=CC=CC=1O" inchi="1S/C44H28N4O8.ClH.Fe/c49-29-5-1-6-30(50)41(29)37-21-13-15-23(45-21)38(42-31(51)7-2-8-32(42)52)25-17-19-27(47-25)40(44-35(55)11-4-12-36(44)56)28-20-18-26(48-28)39(24-16-14-22(37)46-24)43-33(53)9-3-10-34(43)54;;/h1-20H,(H8-2,45,46,47,48,49,50,51,52,53,54,55,56);1H;/q-2;;+3/p-1/b37-21+,37-22+,38-23+,38-25+,39-24+,39-26+,40-27+,40-28+;;" inchikey="JQYRTQVHCKLBTL-YQGGSDPOSA-M" height="200px" width="300px" float="none"> | |||
-INDIGO-05102411192D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 58 69 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 C 5.63617 -7.01572 0.0 0 | |||
M V30 2 C 6.31968 -7.68753 0.0 0 | |||
M V30 3 C 7.24259 -7.18012 0.0 0 | |||
M V30 4 N 7.09189 -6.25401 0.0 0 | |||
M V30 5 C 6.09178 -6.08441 0.0 0 | |||
M V30 6 C 6.34788 -2.72927 0.0 0 | |||
M V30 7 C 5.64067 -3.44888 0.0 0 | |||
M V30 8 C 6.07618 -4.30099 0.0 0 | |||
M V30 9 N 7.03759 -4.11439 0.0 0 | |||
M V30 10 C 7.24309 -3.14948 0.0 0 | |||
M V30 11 C 5.62057 -5.2325 0.0 0 | |||
M V30 12 C 10.5976 -3.33428 0.0 0 | |||
M V30 13 C 9.91412 -2.66247 0.0 0 | |||
M V30 14 C 8.99081 -3.13418 0.0 0 | |||
M V30 15 N 9.17791 -4.13129 0.0 0 | |||
M V30 16 C 10.1064 -4.26599 0.0 0 | |||
M V30 17 C 9.95772 -7.65583 0.0 0 | |||
M V30 18 C 10.6294 -6.97212 0.0 0 | |||
M V30 19 C 10.1574 -6.01331 0.0 0 | |||
M V30 20 N 9.16061 -6.23601 0.0 0 | |||
M V30 21 C 8.99071 -7.20052 0.0 0 | |||
M V30 22 C 8.1386 -7.67163 0.0 0 | |||
M V30 23 C 10.6136 -5.1532 0.0 0 | |||
M V30 24 C 8.13038 -1.67807 0.0 0 | |||
M V30 25 C 7.26381 -0.180413 0.0 0 | |||
M V30 26 C 7.26355 -1.17805 0.0 0 | |||
M V30 27 C 8.13032 0.32064 0.0 0 | |||
M V30 28 C 9.00036 -1.17502 0.0 0 | |||
M V30 29 C 8.99389 -0.174964 0.0 0 | |||
M V30 30 C 8.1307 -2.67807 0.0 0 | |||
M V30 31 O 6.39755 -1.6781 0.0 0 | |||
M V30 32 O 9.86816 -1.67193 0.0 0 | |||
M V30 33 C 11.6135 -5.13737 0.0 0 | |||
M V30 34 Fe 8.025 -5.2 0.0 0 | |||
M V30 35 C 13.1112 -4.27079 0.0 0 | |||
M V30 36 C 12.1135 -4.27053 0.0 0 | |||
M V30 37 C 13.6122 -5.1373 0.0 0 | |||
M V30 38 C 12.1166 -6.00734 0.0 0 | |||
M V30 39 C 13.1166 -6.00088 0.0 0 | |||
M V30 40 C 4.62089 -5.25767 0.0 0 | |||
M V30 41 C 8.14026 -8.67162 0.0 0 | |||
M V30 42 C 3.12323 -6.12424 0.0 0 | |||
M V30 43 C 4.12087 -6.1245 0.0 0 | |||
M V30 44 C 2.62218 -5.25774 0.0 0 | |||
M V30 45 C 4.11784 -4.3877 0.0 0 | |||
M V30 46 C 3.11778 -4.39416 0.0 0 | |||
M V30 47 C 9.00683 -10.1693 0.0 0 | |||
M V30 48 C 9.00709 -9.17165 0.0 0 | |||
M V30 49 C 8.14033 -10.6703 0.0 0 | |||
M V30 50 C 7.27029 -9.17468 0.0 0 | |||
M V30 51 C 7.27675 -10.1747 0.0 0 | |||
M V30 52 O 9.87309 -8.6716 0.0 0 | |||
M V30 53 O 6.40248 -8.67777 0.0 0 | |||
M V30 54 O 4.61474 -3.51989 0.0 0 | |||
M V30 55 O 4.62092 -6.9905 0.0 0 | |||
M V30 56 O 11.6135 -3.40454 0.0 0 | |||
M V30 57 O 11.6196 -6.87514 0.0 0 | |||
M V30 58 Cl 8.025 -6.125 0.0 0 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 1 2 | |||
M V30 2 1 2 3 | |||
M V30 3 1 3 4 | |||
M V30 4 2 4 5 | |||
M V30 5 1 1 5 | |||
M V30 6 1 5 11 | |||
M V30 7 2 3 22 | |||
M V30 8 2 6 7 | |||
M V30 9 1 7 8 | |||
M V30 10 1 8 9 | |||
M V30 11 1 9 10 | |||
M V30 12 1 6 10 | |||
M V30 13 2 8 11 | |||
M V30 14 2 12 13 | |||
M V30 15 1 13 14 | |||
M V30 16 2 14 15 | |||
M V30 17 1 15 16 | |||
M V30 18 1 12 16 | |||
M V30 19 2 16 23 | |||
M V30 20 1 17 18 | |||
M V30 21 2 18 19 | |||
M V30 22 1 19 20 | |||
M V30 23 1 20 21 | |||
M V30 24 2 17 21 | |||
M V30 25 1 21 22 | |||
M V30 26 1 19 23 | |||
M V30 27 2 26 24 | |||
M V30 28 2 27 25 | |||
M V30 29 1 24 28 | |||
M V30 30 1 25 26 | |||
M V30 31 2 28 29 | |||
M V30 32 1 29 27 | |||
M V30 33 1 30 24 | |||
M V30 34 1 14 30 | |||
M V30 35 2 10 30 | |||
M V30 36 1 26 31 | |||
M V30 37 1 28 32 | |||
M V30 38 1 23 33 | |||
M V30 39 1 9 34 | |||
M V30 40 1 34 20 | |||
M V30 41 8 4 34 | |||
M V30 42 8 34 15 | |||
M V30 43 2 36 33 | |||
M V30 44 2 37 35 | |||
M V30 45 1 33 38 | |||
M V30 46 1 35 36 | |||
M V30 47 2 38 39 | |||
M V30 48 1 39 37 | |||
M V30 49 1 11 40 | |||
M V30 50 1 22 41 | |||
M V30 51 2 43 40 | |||
M V30 52 2 44 42 | |||
M V30 53 1 40 45 | |||
M V30 54 1 42 43 | |||
M V30 55 2 45 46 | |||
M V30 56 1 46 44 | |||
M V30 57 2 48 41 | |||
M V30 58 2 49 47 | |||
M V30 59 1 41 50 | |||
M V30 60 1 47 48 | |||
M V30 61 2 50 51 | |||
M V30 62 1 51 49 | |||
M V30 63 1 48 52 | |||
M V30 64 1 50 53 | |||
M V30 65 1 45 54 | |||
M V30 66 1 43 55 | |||
M V30 67 1 36 56 | |||
M V30 68 1 38 57 | |||
M V30 69 1 58 34 | |||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
</chemform> | |||
====Photosensitizer==== | |||
<chemform smiles="" inchi="" inchikey="NSABRUJKERBGOU-UHFFFAOYSA-N " height="200px" width="300px" float="none"></chemform><chemform smiles="C1C=CC2C=C3C=CC=CC3=C(C#N)C=2C=1" inchi="1S/C15H9N/c16-10-15-13-7-3-1-5-11(13)9-12-6-2-4-8-14(12)15/h1-9H" inchikey="KEQZHLAEKAVZLY-UHFFFAOYSA-N" height="200px" width="300px" float="none"> | |||
-INDIGO-05102413272D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 16 18 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 C 4.38485 -6.0 0.0 0 | |||
M V30 2 C 6.11515 -5.99959 0.0 0 | |||
M V30 3 C 5.25164 -5.49997 0.0 0 | |||
M V30 4 C 6.11515 -7.00053 0.0 0 | |||
M V30 5 C 4.38485 -7.00502 0.0 0 | |||
M V30 6 C 5.25382 -7.50003 0.0 0 | |||
M V30 7 C 6.97965 -5.50121 0.0 0 | |||
M V30 8 C 7.84683 -6.00155 0.0 0 | |||
M V30 9 C 6.9858 -7.50287 0.0 0 | |||
M V30 10 C 7.84903 -6.99746 0.0 0 | |||
M V30 11 C 8.70588 -5.50378 0.0 0 | |||
M V30 12 C 9.56981 -5.99969 0.0 0 | |||
M V30 13 C 8.71641 -7.49535 0.0 0 | |||
M V30 14 C 9.57419 -6.99059 0.0 0 | |||
M V30 15 C 6.97982 -4.50121 0.0 0 | |||
M V30 16 N 6.97982 -3.50121 0.0 0 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 3 1 | |||
M V30 2 2 4 2 | |||
M V30 3 1 1 5 | |||
M V30 4 1 2 3 | |||
M V30 5 2 5 6 | |||
M V30 6 1 6 4 | |||
M V30 7 2 8 7 | |||
M V30 8 1 4 9 | |||
M V30 9 1 7 2 | |||
M V30 10 2 9 10 | |||
M V30 11 1 10 8 | |||
M V30 12 2 12 11 | |||
M V30 13 1 10 13 | |||
M V30 14 1 11 8 | |||
M V30 15 2 13 14 | |||
M V30 16 1 14 12 | |||
M V30 17 1 7 15 | |||
M V30 18 3 15 16 | |||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
</chemform> | |||
====Investigation==== | |||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=photocatalytic conversion of CO2 to CO|importFile=}} | |||
====Sacrificial electron donor==== | |||
In this study, the experiments were done with the sacrificial electron donor TEA ({{#moleculelink:|link=ZMANZCXQSJIPKH-UHFFFAOYSA-N|image=false|width=300|height=200}}). | |||
====Additives==== | |||
In this study, no additives were tested. |
Latest revision as of 12:43, 15 May 2024
Abstract[edit | edit source]
Summary[edit | edit source]
The photochemical reduction of CO2 to CO was shown using the iron complex Fe(DHPP)Cl in combination with the photosensitizers Ir(ppy)3 or 9-Anthracenecarbonitrile. Turnover numbers (TONs) of up to 140 and a selectivity of 93% for CO were reached in acetonitrile after 55 h of irradiation. The experiments were conducted under visible-light irradiation (λ > 400 nm) with TEA (see section SEDs below) as sacrificial electron donor.
Advances and special progress[edit | edit source]
The authors reported one of the highest TONs in homogeneous photocatalysis at that time in this study without detecting significant degradation of the catalyst or sensitizer. In addition, they reported the use of a cheap organic photosensitizer for CO2 conversion with a slightly lower TON (60), but higher selectivity (100%).
Additional remarks[edit | edit source]
Content of the published article in detail[edit | edit source]
The article contains results of a study for the reduction of CO2 to CO using an iron complex and an iridium-based or organic photosensitizer. The catalytic system performs best (referring to the TON of CO production) in acetonitrile with photosensitizer Ir(ppy)3.
Catalyst[edit | edit source]
Photosensitizer[edit | edit source]
Ir(ppy)3 9-Anthracenecarbonitrile
Investigation[edit | edit source]
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | . | . | TON CO | . | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.002 | 0.2 | 0.36 | 140 | |||||||
2. | 0.002 | 0.2 | 0.36 | 40 | |||||||
3. | 0.002 | 0.2 | 0.05 | 60 |
Sacrificial electron donor[edit | edit source]
In this study, the experiments were done with the sacrificial electron donor TEA (TEA).
Additives[edit | edit source]
In this study, no additives were tested.
Investigations
- photocatalytic conversion of CO2 to CO (Molecular process, Photocatalytic CO2 conversion experiments)