Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues.: Difference between revisions

From ChemWiki
m (auto-generated)
m (auto-generated)
 
Line 4: Line 4:
===Abstract===
===Abstract===
====Summary====
====Summary====
A photochemical reduction of CO<sub>2</sub> to CO was shown using the iron complex {{#moleculelink:|link=ZCGUPOIZKSBSCM-UHFFFAOYSA-N|image=false|width=300|height=200}} as catalyst in combination with the copper photosensitizer {{#moleculelink: |link=QVCHJOOPCKCUBW-UHFFFAOYSA-P|image=false|width=300|height=200}}. Turnover numbers (TONs) of 576 and a selectivity of 67% for CO were reached in MeCN/TEOA. The experiments were conducted under visible-light irradiation (λ = 420 nm) using BIH as sacrificial electron donor (see section SEDs below). The homoleptic iron complex {{#moleculelink: |link=MDOYJUSGWSBHCN-UHFFFAOYSA-L|image=false|width=300|height=200}} and the cobalt complexes {{#moleculelink:|link=JDMNOCVBLMVSON-UHFFFAOYSA-N|image=false|width=300|height=200}} and {{#moleculelink:|link=QMZVNZOKJUBNLZ-UHFFFAOYSA-N|image=false|width=300|height=200}} were tested for CO<sub>2</sub> reduction as well, but did not show substantial conversion of CO<sub>2</sub> to CO.  
A photochemical reduction of CO<sub>2</sub> to CO was shown using the iron complex {{#moleculelink:|link=ZCGUPOIZKSBSCM-UHFFFAOYSA-N|image=false|width=300|height=200}} as catalyst in combination with the copper photosensitizer {{#moleculelink: |link=QVCHJOOPCKCUBW-UHFFFAOYSA-P|image=false|width=300|height=200}}. Turnover numbers (TONs) of 576 and a selectivity of 67% for CO were reached in MeCN/TEOA. The experiments were conducted under visible-light irradiation (λ = 420 nm) using BIH as sacrificial electron donor (see section SEDs below). The homoleptic iron complex {{#moleculelink: |link=MDOYJUSGWSBHCN-UHFFFAOYSA-L|image=false|width=300|height=200}} and the cobalt complexes {{#moleculelink:|link=JDMNOCVBLMVSON-UHFFFAOYSA-N|image=false|width=300|height=200}} and {{#moleculelink: |link=BIZSTNKZWFMLKY-UHFFFAOYSA-L|image=false|width=300|height=200}} were tested for CO<sub>2</sub> reduction as well, but did not show substantial conversion of CO<sub>2</sub> to CO.  
====Advances and special progress====
====Advances and special progress====
The authors reported a iron complex with one of the highest activities for CO<sub>2</sub> reduction among earth-abundant systems with monometallic iron catalysts.
The authors reported a iron complex with one of the highest activities for CO<sub>2</sub> reduction among earth-abundant systems with monometallic iron catalysts.
Line 389: Line 389:
M  V30 END CTAB
M  V30 END CTAB
M  END
M  END
</chemform><chemform smiles="[Co]12(~N3C(CN4C=C(C5C=CC=CC=5)N=N4~1)=CC=CC=3CN1N~2=NC(C2C=CC=CC=2)=C1)12~N3N(C=C(C4C=CC=CC=4)N=3)CC3C=CC=C(CN4C=C(C5C=CC=CC=5)N=N4~1)N=3~2" inchi="1S/2C23H19N7.Co/c2*1-3-8-18(9-4-1)22-16-29(27-25-22)14-20-12-7-13-21(24-20)15-30-17-23(26-28-30)19-10-5-2-6-11-19;/h2*1-13,16-17H,14-15H2;" inchikey="QMZVNZOKJUBNLZ-UHFFFAOYSA-N" height="200px" width="300px" float="none">
</chemform><chemform smiles="[Co+2]12(~N3C(CN4C=C(C5C=CC=CC=5)N=N4~1)=CC=CC=3CN1N~2=NC(C2C=CC=CC=2)=C1)12~N3N(C=C(C4C=CC=CC=4)N=3)CC3C=CC=C(CN4C=C(C5C=CC=CC=5)N=N4~1)N=3~2.Cl(=O)([O-])(=O)=O.Cl(=O)([O-])(=O)=O" inchikey="BIZSTNKZWFMLKY-UHFFFAOYSA-L" inchi="1S/2C23H19N7.2ClHO4.Co/c2*1-3-8-18(9-4-1)22-16-29(27-25-22)14-20-12-7-13-21(24-20)15-30-17-23(26-28-30)19-10-5-2-6-11-19;2*2-1(3,4)5;/h2*1-13,16-17H,14-15H2;2*(H,2,3,4,5);/q;;;;+2/p-2" float="none" width="200" height="200">
   -INDIGO-05142414222D
   -INDIGO-01102515112D


   0  0  0  0  0  0  0  0  0  0  0 V3000
   0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 BEGIN CTAB
M  V30 COUNTS 61 74 0 0 0
M  V30 COUNTS 71 82 0 0 0
M  V30 BEGIN ATOM
M  V30 BEGIN ATOM
M  V30 1 Co 10.25 -5.675 0.0 0
M  V30 1 Co 10.25 -5.675 0.0 0 CHG=2
M  V30 2 C 9.38485 -10.4751 0.0 0
M  V30 2 C 9.38485 -10.4751 0.0 0
M  V30 3 C 11.0902 -10.4746 0.0 0
M  V30 3 C 11.0902 -10.4746 0.0 0
Line 457: Line 457:
M  V30 60 C 4.96306 -5.45448 0.0 0
M  V30 60 C 4.96306 -5.45448 0.0 0
M  V30 61 C 4.0933 -3.95891 0.0 0
M  V30 61 C 4.0933 -3.95891 0.0 0
M  V30 62 Cl 17.95 -1.975 0.0 0
M  V30 63 O 17.95 -0.975 0.0 0
M  V30 64 O 18.9159 -2.23382 0.0 0
M  V30 65 O 17.6912 -2.94093 0.0 0 CHG=-1
M  V30 66 O 16.9841 -2.23382 0.0 0
M  V30 67 Cl 18.125 -4.51704 0.0 0
M  V30 68 O 18.125 -3.51704 0.0 0
M  V30 69 O 19.0909 -4.77586 0.0 0
M  V30 70 O 17.8662 -5.48296 0.0 0 CHG=-1
M  V30 71 O 17.1591 -4.77586 0.0 0
M  V30 END ATOM
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 BEGIN BOND
Line 533: Line 543:
M  V30 73 8 1 16
M  V30 73 8 1 16
M  V30 74 8 1 4
M  V30 74 8 1 4
M  V30 75 2 62 63
M  V30 76 2 62 64
M  V30 77 1 62 65
M  V30 78 2 62 66
M  V30 79 2 67 68
M  V30 80 2 67 69
M  V30 81 1 67 70
M  V30 82 2 67 71
M  V30 END BOND
M  V30 END BOND
M  V30 END CTAB
M  V30 END CTAB

Latest revision as of 16:12, 10 January 2025


Abstract[edit | edit source]

Summary[edit | edit source]

A photochemical reduction of CO2 to CO was shown using the iron complex 100941 as catalyst in combination with the copper photosensitizer 100940. Turnover numbers (TONs) of 576 and a selectivity of 67% for CO were reached in MeCN/TEOA. The experiments were conducted under visible-light irradiation (λ = 420 nm) using BIH as sacrificial electron donor (see section SEDs below). The homoleptic iron complex 100942 and the cobalt complexes 100944 and 100945 were tested for CO2 reduction as well, but did not show substantial conversion of CO2 to CO.

Advances and special progress[edit | edit source]

The authors reported a iron complex with one of the highest activities for CO2 reduction among earth-abundant systems with monometallic iron catalysts.

Additional remarks[edit | edit source]

In addition to the production of CO, a substantial amount of H2 (TON of 287) was formed in the reduction process with complex 100941.

Content of the published article in detail[edit | edit source]

The article contains results for the reduction of CO2 to CO under visible-light catalysis using the iron complex 100941 as a catalyst. The catalytic system performs best (referring to the TON of CO production) in MeCN/TEOA.

Catalyst[edit | edit source]

100941 100942 100944 100945

Photosensitizer[edit | edit source]

100940

Investigation[edit | edit source]

Investigation-Name: Optimization of CO2 reduction conditions
catcat conc [µM]PSPS conc [mM]e-De-D conc [M]solvent A...λexc [nm].TON COTON H2.
1.

Molecule:100942

100

Molecule:100940

1.0

BIH

0.02

MeCN

4207.82
2.

Molecule:100944

100

Molecule:100940

1.0

BIH

0.02

MeCN

4201.17.4
3.

Molecule:100945

100

Molecule:100940

1.0

BIH

0.02

MeCN

4200.74.9

Sacrificial electron donor[edit | edit source]

In this study, the experiments were done with the sacrificial electron donor BIH (100508).

Additives[edit | edit source]

In this study, control experiments with Hg and without CO2 were conducted.

Investigations