Efficient Visible-Light-Driven Carbon Dioxide Reduction using a Bioinspired Nickel Molecular Catalyst: Difference between revisions
publication
| About |
|---|
| Line 375: | Line 375: | ||
M V30 96 1 79 85 | M V30 96 1 79 85 | ||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | |||
M END | |||
</chemform><chemform smiles="C1(C(=C(C(=C(C=1N(C1C=CC=CC=1)C1C=CC=CC=1)N(C1C=CC=CC=1)C1C=CC=CC=1)N(C1C=CC=CC=1)C1=CC=CC=C1)C#N)N(C1C=CC=CC=1)C1C=CC=CC=1)C#N" inchi="1S/C56H40N6/c57-41-51-53(59(43-25-9-1-10-26-43)44-27-11-2-12-28-44)52(42-58)55(61(47-33-17-5-18-34-47)48-35-19-6-20-36-48)56(62(49-37-21-7-22-38-49)50-39-23-8-24-40-50)54(51)60(45-29-13-3-14-30-45)46-31-15-4-16-32-46/h1-40H" inchikey="ZOMQCVKHGOMNER-UHFFFAOYSA-N" height="200px" width="300px" float="none"> | |||
-INDIGO-12122411272D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 62 70 5 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 C -0.714471 0.4125 0.0 0 | |||
M V30 2 C -0.714471 -0.4125 0.0 0 | |||
M V30 3 C 0.0 -0.825 0.0 0 | |||
M V30 4 C 0.714471 -0.4125 0.0 0 | |||
M V30 5 C 0.714471 0.4125 0.0 0 | |||
M V30 6 C 0.0 0.825 0.0 0 | |||
M V30 7 C -1.42894 0.825 0.0 0 | |||
M V30 8 N -2.14341 1.2375 0.0 0 | |||
M V30 9 C 1.42894 0.825 0.0 0 | |||
M V30 10 N 2.14341 1.2375 0.0 0 | |||
M V30 11 N 0.05 2.925 0.0 0 | |||
M V30 12 C 0.764471 3.3375 0.0 0 | |||
M V30 13 C 1.47894 2.925 0.0 0 | |||
M V30 14 C 2.19341 3.3375 0.0 0 | |||
M V30 15 C 2.19341 4.1625 0.0 0 | |||
M V30 16 C 1.47894 4.575 0.0 0 | |||
M V30 17 C 0.764471 4.1625 0.0 0 | |||
M V30 18 C -0.664471 3.3375 0.0 0 | |||
M V30 19 C -0.664471 4.1625 0.0 0 | |||
M V30 20 C -1.37894 4.575 0.0 0 | |||
M V30 21 C -2.09341 4.1625 0.0 0 | |||
M V30 22 C -2.09341 3.3375 0.0 0 | |||
M V30 23 C -1.37894 2.925 0.0 0 | |||
M V30 24 N -3.20394 -1.95 0.0 0 | |||
M V30 25 C -3.91841 -1.5375 0.0 0 | |||
M V30 26 C -3.91841 -0.7125 0.0 0 | |||
M V30 27 C -4.63288 -0.3 0.0 0 | |||
M V30 28 C -5.34736 -0.7125 0.0 0 | |||
M V30 29 C -5.34736 -1.5375 0.0 0 | |||
M V30 30 C -4.63288 -1.95 0.0 0 | |||
M V30 31 C -3.20394 -2.775 0.0 0 | |||
M V30 32 C -3.91841 -3.1875 0.0 0 | |||
M V30 33 C -3.91841 -4.0125 0.0 0 | |||
M V30 34 C -3.20394 -4.425 0.0 0 | |||
M V30 35 C -2.48947 -4.0125 0.0 0 | |||
M V30 36 C -2.48947 -3.1875 0.0 0 | |||
M V30 37 N 0.025 -3.8 0.0 0 | |||
M V30 38 C -1.40394 -3.8 0.0 0 | |||
M V30 39 C -2.11841 -5.0375 0.0 0 | |||
M V30 40 C -1.40394 -5.45 0.0 0 | |||
M V30 41 C -0.689471 -5.0375 0.0 0 | |||
M V30 42 C 0.739471 -4.2125 0.0 0 | |||
M V30 43 C 0.739471 -5.0375 0.0 0 | |||
M V30 44 C 1.45394 -5.45 0.0 0 | |||
M V30 45 C 2.16841 -4.2125 0.0 0 | |||
M V30 46 C 1.45394 -3.8 0.0 0 | |||
M V30 47 N 3.52894 -1.825 0.0 0 | |||
M V30 48 C 3.52894 -2.65 0.0 0 | |||
M V30 49 C 2.81447 -3.8875 0.0 0 | |||
M V30 50 C 3.52894 -4.3 0.0 0 | |||
M V30 51 C 4.24341 -3.8875 0.0 0 | |||
M V30 52 C 4.24341 -3.0625 0.0 0 | |||
M V30 53 C 4.24341 -1.4125 0.0 0 | |||
M V30 54 C 4.95788 -1.825 0.0 0 | |||
M V30 55 C 5.67236 -1.4125 0.0 0 | |||
M V30 56 C 5.67236 -0.5875 0.0 0 | |||
M V30 57 C 4.95788 -0.175 0.0 0 | |||
M V30 58 C 4.24341 -0.5875 0.0 0 | |||
M V30 59 C 2.16841 -5.0375 0.0 0 | |||
M V30 60 C -2.11841 -4.2125 0.0 0 | |||
M V30 61 C -0.689471 -4.2125 0.0 0 | |||
M V30 62 C 2.81447 -3.0625 0.0 0 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 3 7 8 | |||
M V30 2 1 1 7 | |||
M V30 3 3 9 10 | |||
M V30 4 1 5 9 | |||
M V30 5 2 22 23 | |||
M V30 6 1 21 22 | |||
M V30 7 2 20 21 | |||
M V30 8 1 19 20 | |||
M V30 9 2 18 19 | |||
M V30 10 1 18 23 | |||
M V30 11 2 16 17 | |||
M V30 12 1 15 16 | |||
M V30 13 2 14 15 | |||
M V30 14 1 13 14 | |||
M V30 15 2 12 13 | |||
M V30 16 1 12 17 | |||
M V30 17 1 11 12 | |||
M V30 18 1 11 18 | |||
M V30 19 1 6 11 | |||
M V30 20 2 35 36 | |||
M V30 21 1 34 35 | |||
M V30 22 2 33 34 | |||
M V30 23 1 32 33 | |||
M V30 24 2 31 32 | |||
M V30 25 1 31 36 | |||
M V30 26 2 29 30 | |||
M V30 27 1 28 29 | |||
M V30 28 2 27 28 | |||
M V30 29 1 26 27 | |||
M V30 30 2 25 26 | |||
M V30 31 1 25 30 | |||
M V30 32 1 24 25 | |||
M V30 33 1 24 31 | |||
M V30 34 1 2 24 | |||
M V30 35 2 45 46 | |||
M V30 36 1 43 44 | |||
M V30 37 2 42 43 | |||
M V30 38 1 42 46 | |||
M V30 39 2 40 41 | |||
M V30 40 1 39 40 | |||
M V30 41 1 37 42 | |||
M V30 42 1 3 37 | |||
M V30 43 2 57 58 | |||
M V30 44 1 56 57 | |||
M V30 45 2 55 56 | |||
M V30 46 1 54 55 | |||
M V30 47 2 53 54 | |||
M V30 48 1 53 58 | |||
M V30 49 2 51 52 | |||
M V30 50 1 50 51 | |||
M V30 51 2 49 50 | |||
M V30 52 1 48 52 | |||
M V30 53 1 47 48 | |||
M V30 54 1 47 53 | |||
M V30 55 1 4 47 | |||
M V30 56 2 1 2 | |||
M V30 57 1 2 3 | |||
M V30 58 2 3 4 | |||
M V30 59 1 4 5 | |||
M V30 60 2 5 6 | |||
M V30 61 1 6 1 | |||
M V30 62 1 59 45 | |||
M V30 63 2 44 59 | |||
M V30 64 1 38 60 | |||
M V30 65 2 60 39 | |||
M V30 66 2 61 38 | |||
M V30 67 1 37 61 | |||
M V30 68 1 61 41 | |||
M V30 69 2 48 62 | |||
M V30 70 1 62 49 | |||
M V30 END BOND | |||
M V30 BEGIN SGROUP | |||
M V30 1 SUP 1 ATOMS=(2 7 8) BRKXYZ=(9 0.000000 0.000000 0.000000 0.000000 0.- | |||
M V30 000000 0.000000 0.000000 0.000000 0.000000) BRKXYZ=(9 0.000000 0.00000- | |||
M V30 0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000) LABE- | |||
M V30 L=CN | |||
M V30 2 SUP 2 ATOMS=(2 9 10) BRKXYZ=(9 0.000000 0.000000 0.000000 0.000000 0- | |||
M V30 .000000 0.000000 0.000000 0.000000 0.000000) BRKXYZ=(9 0.000000 0.0000- | |||
M V30 00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000) LAB- | |||
M V30 EL=CN | |||
M V30 3 SUP 3 ATOMS=(13 11 12 13 14 15 16 17 18 19 20 21 22 23) BRKXYZ=(9 0.- | |||
M V30 000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 - | |||
M V30 0.000000) BRKXYZ=(9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000- | |||
M V30 000 0.000000 0.000000 0.000000) LABEL=NPh2 | |||
M V30 4 SUP 4 ATOMS=(13 37 38 39 40 41 42 43 44 45 46 59 60 61) BRKXYZ=(9 0.- | |||
M V30 000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 - | |||
M V30 0.000000) BRKXYZ=(9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000- | |||
M V30 000 0.000000 0.000000 0.000000) LABEL=NPh2 | |||
M V30 5 SUP 5 ATOMS=(13 47 48 49 50 51 52 53 54 55 56 57 58 62) BRKXYZ=(9 0.- | |||
M V30 000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 - | |||
M V30 0.000000) BRKXYZ=(9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000- | |||
M V30 000 0.000000 0.000000 0.000000) LABEL=NPh2 | |||
M V30 END SGROUP | |||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
Revision as of 11:27, 12 December 2024
Abstract[edit | edit source]
The study introduces a bioinspired nickel-based molecular catalyst, [Ni(N2S2)]Cl2 (NiN2S2), for photochemical catalytic reduction of CO2 under visible light. Combining the catalyst with [Ru(bpy)3]Cl2 as a photosensitizer and BIH as a sacrificial electron donor, the system achieved an 89% selectivity towards CO, with a turnover number (TON) of 7991 during 8 hours of irradiation. The process demonstrated high catalytic efficiency with a turnover frequency (TOF) of 1079 h⁻¹ and an apparent quantum yield (AQY) of 1.08%.
Summary[edit | edit source]
Inspired by natural enzymes, this work focuses on the development of a novel nickel catalyst for CO2 photoreduction. NiN2S2, designed with thiol and pyridine ligands, exhibited remarkable activity and selectivity in converting CO2 to CO. Control experiments confirmed the necessity of light, the catalyst, and sacrificial electron donors. Acidic co-substrates such as phenol further enhanced the reaction's efficiency without compromising selectivity. This study establishes NiN2S2 as a promising candidate for sustainable CO2 reduction under visible light.
Additional remarks[edit | edit source]
- The combination of sulfur and nitrogen ligands in NiN2S2 enhances its stability and catalytic efficiency.
- Acid additives, particularly phenol, significantly improve reaction rates, indicating a key role in CO2 stabilization and protonation steps.
- Further research is proposed to optimize ligand coordination and investigate intermediate reaction mechanisms.
Content of the published article in detail[edit | edit source]
- The synthesis and characterization of NiN2S2 using advanced analytical techniques like LC-HRMS and X-ray crystallography.
- The photocatalytic performance of NiN2S2 in reducing CO2 to CO under visible light, achieving high selectivity and efficiency.
- Mechanistic insights into the electron transfer process facilitated by the catalyst and photosensitizer.
Catalysts tested in this study[edit | edit source]
([Ni(N2S2)]Cl2): A bioinspired nickel molecular catalyst.
Photosensitizer[edit | edit source]
Ru(bpy)3Cl2
2,4,5,6-Tetrakis(diphenylamino)isophthalonitrile
Investigation[edit | edit source]
Key aspects investigated include:
- Catalyst stability and reusability.
- Impact of photosensitizer and electron donor concentrations on performance.
- Role of acidic co-substrates in improving CO2 reduction rates.
| cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | . | . | solvent A | . | . | . | λexc [nm] | . | . | . | . | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1. | 1 | 0.7 | 0.02 | 420 | |||||||||||||
| 2. | 1 | 0.7 | 0.02 | 420 | |||||||||||||
| 3. | 1 | 0.7 | 0.02 | 420 | |||||||||||||
| 4. | 1 | 0.7 | 0.02 | 420 | |||||||||||||
| 5. | 1 | 0.7 | 0.02 | 420 | |||||||||||||
| 6. | 1 | 0.7 | 0.02 | 420 | |||||||||||||
| 7. | 1 | 0.7 | 0.02 | 420 | |||||||||||||
| 8. | 1 | 0.7 | 0.02 | 420 | |||||||||||||
| 9. | 1 | 0.7 | 0.02 | 420 |

Further Information[edit | edit source]
- Control experiments demonstrated that light, the catalyst, and BIH were essential for activity.
- The reaction follows a reductive quenching pathway with efficient electron transfer from BIH to the photosensitizer and subsequently to the catalyst.
Sacrificial electron donor[edit | edit source]
In This Study, the Experiments Were Done With the Sacrificial Electron Donor BIH.
Investigations
- Table 01 (Molecular process, Photocatalytic CO2 conversion experiments)

