Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues.: Difference between revisions
From ChemWiki
publication
About |
---|
No edit summary |
(added molecule) |
||
Line 4: | Line 4: | ||
===Abstract=== | ===Abstract=== | ||
====Summary==== | ====Summary==== | ||
A photochemical reduction of CO<sub>2</sub> to CO was shown using the iron complex as catalyst in combination with the copper photosensitizer . Turnover numbers (TONs) of 576 and a selectivity of 67% for CO were reached in DMF. The experiments were conducted under visible-light irradiation (λ = 420 nm) using BIH as sacrificial electron donor (see section SEDs below). | A photochemical reduction of CO<sub>2</sub> to CO was shown using the iron complex as catalyst in combination with the copper photosensitizer {{#moleculelink:|link=SVWABAAUBHILMW-UHFFFAOYSA-P|image=false|width=300|height=200}}. Turnover numbers (TONs) of 576 and a selectivity of 67% for CO were reached in DMF. The experiments were conducted under visible-light irradiation (λ = 420 nm) using BIH as sacrificial electron donor (see section SEDs below). | ||
====Advances and special progress==== | ====Advances and special progress==== | ||
====Additional remarks==== | ====Additional remarks==== | ||
Line 10: | Line 10: | ||
The article contains results for the reduction of CO<sub>2</sub> to CO under visible-light catalysis using an iron complex as a catalyst. The catalytic system performs best (referring to the TON of CO production) in MeCN/TEOA. | The article contains results for the reduction of CO<sub>2</sub> to CO under visible-light catalysis using an iron complex as a catalyst. The catalytic system performs best (referring to the TON of CO production) in MeCN/TEOA. | ||
====Catalyst==== | ====Catalyst==== | ||
<chemform smiles="C12CN3N(~[Fe](N=C=S)(N=C=S)(~N4C=CC=CC=4)4~N=1C(CN1C=C(C5C=CC=CC=5)N=N1~4)=CC=C2)=NC(C1C=CC=CC=1)=C3" inchi="1S/C23H19N7.C5H5N.2CNS.Fe/c1-3-8-18(9-4-1)22-16-29(27-25-22)14-20-12-7-13-21(24-20)15-30-17-23(26-28-30)19-10-5-2-6-11-19;1-2-4-6-5-3-1;2*2-1-3;/h1-13,16-17H,14-15H2;1-5H;;;/q;;2*-1;+2" inchikey="ZCGUPOIZKSBSCM-UHFFFAOYSA-N" height="200px" width="300px" float="none"> | |||
-INDIGO-05142413582D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 43 50 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 C 7.33485 -6.22507 0.0 0 | |||
M V30 2 C 9.06515 -6.22459 0.0 0 | |||
M V30 3 N 8.20164 -5.72497 0.0 0 | |||
M V30 4 C 9.06515 -7.22553 0.0 0 | |||
M V30 5 C 7.33485 -7.23002 0.0 0 | |||
M V30 6 C 8.20382 -7.72503 0.0 0 | |||
M V30 7 C 6.4689 -5.72495 0.0 0 | |||
M V30 8 C 9.93141 -5.72499 0.0 0 | |||
M V30 9 N 6.21008 -4.75902 0.0 0 | |||
M V30 10 C 5.27652 -4.40064 0.0 0 | |||
M V30 11 C 5.32883 -3.40199 0.0 0 | |||
M V30 12 N 6.29474 -3.14317 0.0 0 | |||
M V30 13 N 6.83937 -3.98188 0.0 0 | |||
M V30 14 C 4.55167 -2.77268 0.0 0 | |||
M V30 15 C 2.8799 -2.32643 0.0 0 | |||
M V30 16 C 3.58516 -3.03205 0.0 0 | |||
M V30 17 C 3.13832 -1.35942 0.0 0 | |||
M V30 18 C 4.81112 -1.8018 0.0 0 | |||
M V30 19 C 4.09941 -1.09923 0.0 0 | |||
M V30 20 N 10.2814 -4.78397 0.0 0 | |||
M V30 21 N 9.8747 -3.87043 0.0 0 | |||
M V30 22 N 10.6178 -3.20126 0.0 0 | |||
M V30 23 C 11.4839 -3.70125 0.0 0 | |||
M V30 24 C 11.2759 -4.67942 0.0 0 | |||
M V30 25 C 12.3974 -3.29453 0.0 0 | |||
M V30 26 C 13.2611 -1.79522 0.0 0 | |||
M V30 27 C 12.397 -2.29382 0.0 0 | |||
M V30 28 C 14.1283 -2.29511 0.0 0 | |||
M V30 29 C 13.2681 -3.79642 0.0 0 | |||
M V30 30 C 14.1309 -3.2908 0.0 0 | |||
M V30 31 Fe 8.2 -4.325 0.0 0 | |||
M V30 32 C 7.40985 -0.800074 0.0 0 | |||
M V30 33 C 9.14015 -0.799589 0.0 0 | |||
M V30 34 C 8.27664 -0.299967 0.0 0 | |||
M V30 35 C 9.14015 -1.80053 0.0 0 | |||
M V30 36 C 7.40985 -1.80502 0.0 0 | |||
M V30 37 N 8.27882 -2.30003 0.0 0 | |||
M V30 38 N 6.85 -2.15 0.0 0 | |||
M V30 39 C 6.425 -1.3 0.0 0 | |||
M V30 40 S 6.1 -0.575 0.0 0 | |||
M V30 41 N 10.1574 -6.87235 0.0 0 | |||
M V30 42 C 10.8802 -7.68736 0.0 0 | |||
M V30 43 S 11.4551 -8.39365 0.0 0 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 3 1 | |||
M V30 2 2 4 2 | |||
M V30 3 1 1 5 | |||
M V30 4 1 2 3 | |||
M V30 5 2 5 6 | |||
M V30 6 1 6 4 | |||
M V30 7 1 1 7 | |||
M V30 8 1 2 8 | |||
M V30 9 1 7 9 | |||
M V30 10 1 9 10 | |||
M V30 11 2 10 11 | |||
M V30 12 1 11 12 | |||
M V30 13 2 12 13 | |||
M V30 14 1 13 9 | |||
M V30 15 1 11 14 | |||
M V30 16 2 16 14 | |||
M V30 17 2 17 15 | |||
M V30 18 1 14 18 | |||
M V30 19 1 15 16 | |||
M V30 20 2 18 19 | |||
M V30 21 1 19 17 | |||
M V30 22 1 8 20 | |||
M V30 23 1 20 21 | |||
M V30 24 2 21 22 | |||
M V30 25 1 22 23 | |||
M V30 26 2 23 24 | |||
M V30 27 1 24 20 | |||
M V30 28 1 23 25 | |||
M V30 29 2 27 25 | |||
M V30 30 2 28 26 | |||
M V30 31 1 25 29 | |||
M V30 32 1 26 27 | |||
M V30 33 2 29 30 | |||
M V30 34 1 30 28 | |||
M V30 35 8 13 31 | |||
M V30 36 8 31 21 | |||
M V30 37 8 31 3 | |||
M V30 38 2 34 32 | |||
M V30 39 2 35 33 | |||
M V30 40 1 32 36 | |||
M V30 41 1 33 34 | |||
M V30 42 2 36 37 | |||
M V30 43 1 37 35 | |||
M V30 44 8 31 37 | |||
M V30 45 2 39 40 | |||
M V30 46 2 38 39 | |||
M V30 47 1 38 31 | |||
M V30 48 2 42 43 | |||
M V30 49 2 41 42 | |||
M V30 50 1 41 31 | |||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
</chemform> | |||
====Photosensitizer==== | ====Photosensitizer==== | ||
<chemform smiles="CC1C=CC2C3=C4C(=CC=2)C=CC(C)=N4~[Cu]2(~P(C4C=CC=CC=4)(C4C=CC=CC=4)C4=CC=CC=C4OC4C=CC=CC=4P~2(C2C=CC=CC=2)C2C=CC=CC=2)~N=13" inchi="1S/C36H28OP2.C14H12N2.Cu/c1-5-17-29(18-6-1)38(30-19-7-2-8-20-30)35-27-15-13-25-33(35)37-34-26-14-16-28-36(34)39(31-21-9-3-10-22-31)32-23-11-4-12-24-32;1-9-3-5-11-7-8-12-6-4-10(2)16-14(12)13(11)15-9;/h1-28H;3-8H,1-2H3;/q;;-2/p+2" inchikey="SVWABAAUBHILMW-UHFFFAOYSA-P" height="200px" width="300px" float="none"> | <chemform smiles="CC1C=CC2C3=C4C(=CC=2)C=CC(C)=N4~[Cu]2(~P(C4C=CC=CC=4)(C4C=CC=CC=4)C4=CC=CC=C4OC4C=CC=CC=4P~2(C2C=CC=CC=2)C2C=CC=CC=2)~N=13" inchi="1S/C36H28OP2.C14H12N2.Cu/c1-5-17-29(18-6-1)38(30-19-7-2-8-20-30)35-27-15-13-25-33(35)37-34-26-14-16-28-36(34)39(31-21-9-3-10-22-31)32-23-11-4-12-24-32;1-9-3-5-11-7-8-12-6-4-10(2)16-14(12)13(11)15-9;/h1-28H;3-8H,1-2H3;/q;;-2/p+2" inchikey="SVWABAAUBHILMW-UHFFFAOYSA-P" height="200px" width="300px" float="none"> |
Revision as of 12:58, 14 May 2024
Abstract
Summary
A photochemical reduction of CO2 to CO was shown using the iron complex as catalyst in combination with the copper photosensitizer 100940. Turnover numbers (TONs) of 576 and a selectivity of 67% for CO were reached in DMF. The experiments were conducted under visible-light irradiation (λ = 420 nm) using BIH as sacrificial electron donor (see section SEDs below).
Advances and special progress
Additional remarks
Content of the published article in detail
The article contains results for the reduction of CO2 to CO under visible-light catalysis using an iron complex as a catalyst. The catalytic system performs best (referring to the TON of CO production) in MeCN/TEOA.
Catalyst
Photosensitizer
Investigation
Sacrificial electron donor
In this study, the experiments were done with the sacrificial electron donor BIH (100508).
Additives
In this study, control experiments with Hg were conducted.
Investigations
- CO2 reduction experiments testing different catalysts (Molecular process, Photocatalytic CO2 conversion experiments)
- Optimization of CO2 reduction conditions (Molecular process, Photocatalytic CO2 conversion experiments)