Efficient Visible-Light-Driven Carbon Dioxide Reduction using a Bioinspired Nickel Molecular Catalyst: Difference between revisions

From ChemWiki
publication
ChemUser (talk | contribs)
No edit summary
m auto-generated
Line 184: Line 184:
M  V30 END CTAB
M  V30 END CTAB
M  END
M  END
</chemform><chemform smiles="C1C=C2P(~[Cu+2](~P(C3C=CC=CC=3)(C3C=CC=CC=3)C3C4OC2=C(C(C)(C)C=4C=CC=3)C=1)1N2=C(C)C=C(C3C=CC=CC=3)C3C=CC4C(C5C=CC=CC=5)=CC(C)=N1C=4C=32)(C1C=CC=CC=1)C1C=CC=CC=1.[P-](F)(F)(F)(F)(F)F.[P-](F)(F)(F)(F)(F)F" inchi="1S/C39H32OP2.C26H20N2.Cu.2F6P/c1-39(2)33-25-15-27-35(41(29-17-7-3-8-18-29)30-19-9-4-10-20-30)37(33)40-38-34(39)26-16-28-36(38)42(31-21-11-5-12-22-31)32-23-13-6-14-24-32;1-17-15-23(19-9-5-3-6-10-19)21-13-14-22-24(20-11-7-4-8-12-20)16-18(2)28-26(22)25(21)27-17;;2*1-7(2,3,4,5)6/h3-28H,1-2H3;3-16H,1-2H3;;;/q;;;2*-1/p+2" inchikey="PUXGNGRHEJWNBQ-UHFFFAOYSA-P" height="200px" width="300px" float="none">
</chemform><chemform smiles="C1C=C2P(~[Cu+](~P(C3C=CC=CC=3)(C3C=CC=CC=3)C3C4OC2=C(C(C)(C)C=4C=CC=3)C=1)1~N2=C(C)C=C(C3C=CC=CC=3)C3C=CC4C(C5C=CC=CC=5)=CC(C)=N~1C=4C=32)(C1C=CC=CC=1)C1C=CC=CC=1.[P-](F)(F)(F)(F)(F)F" inchikey="CSSGIEBQRQRBLV-UHFFFAOYSA-P" inchi="1S/C39H32OP2.C26H20N2.Cu.F6P/c1-39(2)33-25-15-27-35(41(29-17-7-3-8-18-29)30-19-9-4-10-20-30)37(33)40-38-34(39)26-16-28-36(38)42(31-21-11-5-12-22-31)32-23-13-6-14-24-32;1-17-15-23(19-9-5-3-6-10-19)21-13-14-22-24(20-11-7-4-8-12-20)16-18(2)28-26(22)25(21)27-17;;1-7(2,3,4,5)6/h3-28H,1-2H3;3-16H,1-2H3;;/q;;2*-1/p+2" float="none" width="200" height="200">
   -INDIGO-12122411182D
   -INDIGO-12162417082D


   0  0  0  0  0  0  0  0  0  0  0 V3000
   0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 BEGIN CTAB
M  V30 COUNTS 85 96 0 0 0
M  V30 COUNTS 78 90 0 0 0
M  V30 BEGIN ATOM
M  V30 BEGIN ATOM
M  V30 1 C -3.79376 2.14341 0.0 0
M  V30 1 C -3.79376 2.14341 0.0 0
Line 207: Line 207:
M  V30 15 C -4.78962 0.583363 0.0 0
M  V30 15 C -4.78962 0.583363 0.0 0
M  V30 16 C -4.78962 -0.583363 0.0 0
M  V30 16 C -4.78962 -0.583363 0.0 0
M  V30 17 Cu 1.21274 -0.360058 0.0 0 CHG=2
M  V30 17 Cu 0.68774 -0.185058 0.0 0 CHG=1
M  V30 18 C 2.74227 1.50444 0.0 0
M  V30 18 C 2.74227 1.50444 0.0 0
M  V30 19 N 2.74227 0.679442 0.0 0
M  V30 19 N 2.74227 0.679442 0.0 0
Line 262: Line 262:
M  V30 70 C 0.18041 1.42705 0.0 0
M  V30 70 C 0.18041 1.42705 0.0 0
M  V30 71 C 1.04325 1.93268 0.0 0
M  V30 71 C 1.04325 1.93268 0.0 0
M  V30 72 P 8.025 1.225 0.0 0 CHG=-1
M  V30 72 P 7.55 0.2 0.0 0 CHG=-1
M  V30 73 F 8.28382 2.19093 0.0 0
M  V30 73 F 8.08382 1.01593 0.0 0
M  V30 74 F 8.99093 0.966181 0.0 0
M  V30 74 F 8.51593 -0.058819 0.0 0
M  V30 75 F 8.28382 0.259074 0.0 0
M  V30 75 F 7.80882 -0.765926 0.0 0
M  V30 76 F 7.31789 0.517893 0.0 0
M  V30 76 F 6.84289 -0.507107 0.0 0
M  V30 77 F 7.025 1.225 0.0 0
M  V30 77 F 6.55 0.2 0.0 0
M  V30 78 F 7.525 2.09103 0.0 0
M  V30 78 F 7.05 1.06603 0.0 0
M  V30 79 P 8.26704 -1.9 0.0 0 CHG=-1
M  V30 80 F 8.52586 -0.934074 0.0 0
M  V30 81 F 9.23296 -2.15882 0.0 0
M  V30 82 F 8.52586 -2.86593 0.0 0
M  V30 83 F 7.55993 -2.60711 0.0 0
M  V30 84 F 7.26704 -1.9 0.0 0
M  V30 85 F 7.76704 -1.03397 0.0 0
M  V30 END ATOM
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 BEGIN BOND
Line 328: Line 321:
M  V30 49 1 18 44
M  V30 49 1 18 44
M  V30 50 1 29 45
M  V30 50 1 29 45
M  V30 51 10 17 19
M  V30 51 8 17 19
M  V30 52 10 17 28
M  V30 52 8 17 28
M  V30 53 1 5 46
M  V30 53 1 5 46
M  V30 54 1 14 47
M  V30 54 1 14 47
Line 368: Line 361:
M  V30 89 1 72 77
M  V30 89 1 72 77
M  V30 90 1 72 78
M  V30 90 1 72 78
M  V30 91 1 79 80
M  V30 92 1 79 81
M  V30 93 1 79 82
M  V30 94 1 79 83
M  V30 95 1 79 84
M  V30 96 1 79 85
M  V30 END BOND
M  V30 END BOND
M  V30 END CTAB
M  V30 END CTAB

Revision as of 17:09, 16 December 2024


Abstract[edit | edit source]

The study introduces a bioinspired nickel-based molecular catalyst, [Ni(N2S2)]Cl2 (NiN2S2), for photochemical catalytic reduction of CO2 under visible light. Combining the catalyst with [Ru(bpy)3]Cl2 as a photosensitizer and BIH as a sacrificial electron donor, the system achieved an 89% selectivity towards CO, with a turnover number (TON) of 7991 during 8 hours of irradiation. The process demonstrated high catalytic efficiency with a turnover frequency (TOF) of 1079 h⁻¹ and an apparent quantum yield (AQY) of 1.08%.

Summary[edit | edit source]

Inspired by natural enzymes, this work focuses on the development of a novel nickel catalyst for CO2 photoreduction. NiN2S2, designed with thiol and pyridine ligands, exhibited remarkable activity and selectivity in converting CO2 to CO. Control experiments confirmed the necessity of light, the catalyst, and sacrificial electron donors. Acidic co-substrates such as phenol further enhanced the reaction's efficiency without compromising selectivity. This study establishes NiN2S2 as a promising candidate for sustainable CO2 reduction under visible light.

Additional remarks[edit | edit source]

  • The combination of sulfur and nitrogen ligands in NiN2S2 enhances its stability and catalytic efficiency.
  • Acid additives, particularly phenol, significantly improve reaction rates, indicating a key role in CO2 stabilization and protonation steps.
  • Further research is proposed to optimize ligand coordination and investigate intermediate reaction mechanisms.

Content of the published article in detail[edit | edit source]

  • The synthesis and characterization of NiN2S2 using advanced analytical techniques like LC-HRMS and X-ray crystallography.
  • The photocatalytic performance of NiN2S2 in reducing CO2 to CO under visible light, achieving high selectivity and efficiency.
  • Mechanistic insights into the electron transfer process facilitated by the catalyst and photosensitizer.

Catalysts tested in this study[edit | edit source]

100990

([Ni(N2S2)]Cl2): A bioinspired nickel molecular catalyst.

Photosensitizer[edit | edit source]

Ru(bpy)3Cl2 100991 2,4,5,6-Tetrakis(diphenylamino)isophthalonitrile

Investigation[edit | edit source]

Key aspects investigated include:

  • Catalyst stability and reusability.
  • Impact of photosensitizer and electron donor concentrations on performance.
  • Role of acidic co-substrates in improving CO2 reduction rates.
Table 01
Investigation-Name: Table 01

Further Information[edit | edit source]

  • Control experiments demonstrated that light, the catalyst, and BIH were essential for activity.
  • The reaction follows a reductive quenching pathway with efficient electron transfer from BIH to the photosensitizer and subsequently to the catalyst.

Sacrificial electron donor[edit | edit source]

In this Study, the experiments were done with the sacrificial electron donor BIH.

Investigations

  • Table 01 (Molecular process, Photocatalytic CO2 conversion experiments)