Light-Driven Reduction of CO2 to CO in Water with a Cobalt Molecular Catalyst and an Organic Sensitizer: Difference between revisions
About |
---|
(Content) |
(content) |
||
Line 6: | Line 6: | ||
==== Summary ==== | ==== Summary ==== | ||
A photochemical reduction of CO2 to CO was shown using the cobalt complex | A photochemical reduction of CO2 to CO was shown using the cobalt complex {{#moleculelink:|link=OZQYFMFOIFRRLI-UHFFFAOYSA-L|image=false|width=300|height=200}} as a catalyst in combination with the organic, water soluble triazatriangulenium photosensitizer {{#moleculelink:|link=DORDHQADTWICIT-UHFFFAOYSA-N|image=false|width=300|height=200}}. Turnover numbers (TONs) up to 19000 and selectivity of 93% for CO were reached in acetonitrile with 20% of water. The experiments were conducted under visible-light irradiation (λ > 450 nm) using tertiary amines or BIH as sacrificial reductants (see section SEDs below). | ||
==== Advances and special progress ==== | ==== Advances and special progress ==== | ||
Line 14: | Line 14: | ||
=== Content of the published article in detail === | === Content of the published article in detail === | ||
The article contains results for the reduction of CO2 to CO under visible-light catalysis using a cobalt complex as a catalyst. The catalytic system performs best (referring to the TON of CO production) | The article contains results for the reduction of CO2 to CO under visible-light catalysis using a cobalt complex as a catalyst. The catalytic system performs best (referring to the TON of CO production) in acetonitrile with 20% water using BIH and TEOA. | ||
==== Catalyst ==== | ==== Catalyst ==== | ||
Line 143: | Line 143: | ||
==== Sacrificial electron donor ==== | ==== Sacrificial electron donor ==== | ||
In this study, the experiments were done with the sacrificial reductants TEOA ([[Molecule:100507|100507]]), BIH ([[Molecule:100508|100508]]), and TEA ([[Molecule:100505|100505]]). | |||
<chemform smiles="" inchi="" inchikey="VDFIVJSRRJXMAU-UHFFFAOYSA-N" height="200px" width="300px" float="none"></chemform> | <chemform smiles="" inchi="" inchikey="VDFIVJSRRJXMAU-UHFFFAOYSA-N" height="200px" width="300px" float="none"></chemform> | ||
==== Additives ==== | ==== Additives ==== |
Revision as of 13:37, 9 January 2024
Abstract
Summary
A photochemical reduction of CO2 to CO was shown using the cobalt complex [Co(qpy)(H2O)2][ClO4]2 as a catalyst in combination with the organic, water soluble triazatriangulenium photosensitizer 100797. Turnover numbers (TONs) up to 19000 and selectivity of 93% for CO were reached in acetonitrile with 20% of water. The experiments were conducted under visible-light irradiation (λ > 450 nm) using tertiary amines or BIH as sacrificial reductants (see section SEDs below).
Advances and special progress
The photoreduction of CO2 to CO could be shown in 100% water with a TON of 2600 and a selectivity of 94% without any noble metals or rare materials.
Additional remarks
Content of the published article in detail
The article contains results for the reduction of CO2 to CO under visible-light catalysis using a cobalt complex as a catalyst. The catalytic system performs best (referring to the TON of CO production) in acetonitrile with 20% water using BIH and TEOA.
Catalyst
Photosensitizer
Investigations
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | . | . | additives | λexc [nm] | TON CO | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.002 | 0.2 | 0.1 | 450 | 2332 | 106 | 1370 | ||||||||
2. | 0.2 | 0.1 | 450 | 0 | 0 | 0 | |||||||||
3. | 0.002 | 0.1 | 450 | 0 | 0 | 0 | |||||||||
4. | 0.002 | 0.2 | 450 | 950 | 86 | 316 | |||||||||
5. | 0.002 | 0.2 | 0.1 | 450 | 107 | 7 | 5 | ||||||||
6. | 0.002 | 0.2 | 0.1 | Argon atmosphere | 450 | 0 | 7 | 0 | |||||||
7. | 0.005 | 0.2 | 0.1 | 450 | 0 | 159 | 0 | ||||||||
8. | 0.002 | 0.2 | 0.1 | Hg (0.1 mL) | 450 | 1880 | 255 | 1973 |
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | . | . | solvent A | . | . | additives | λexc [nm] | TON CO | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.002 | 0.2 | 0.1 | 450 | 2332 | 106 | 1370 | ||||||||||
2. | 0.002 | 0.2 | 0.1 | 450 | 6228 | 304 | 2441 | ||||||||||
3. | 0.002 | 0.2 | 0.1 | 450 | 14691 | 283 | 1097 | ||||||||||
4. | 0.002 | 0.2 | 0.1 | 450 | 15822 | 220 | 1147 | ||||||||||
5. | 0.002 | 0.2 | 0.1 | 450 | 18989 | 227 | 1215 | ||||||||||
6. | 0.002 | 0.2 | 0.1 | Hg | 450 | 19646 | 226 | 415 | |||||||||
7. | 0.002 | 0.2 | 0.1 | 450 | 183 | 9 | 419 | ||||||||||
8. | 0.002 | 0.2 | 0.1 | 450 | 612 | 202 | 51 | ||||||||||
9. | 0.002 | 0.2 | 0.1 | 450 | 515 | 253 | 46 | ||||||||||
10. | 0.002 | 0.2 | 0.1 | 450 | 3171 | 498 | 179 | ||||||||||
11. | 0.002 | 0.2 | 0.1 | 450 | 6331 | 264 | 179 | ||||||||||
12. | 0.002 | 0.2 | 0.1 | Hg | 450 | 6286 | 304 | 97 |
Sacrificial electron donor
In this study, the experiments were done with the sacrificial reductants TEOA (100507), BIH (100508), and TEA (100505).
Additives
Investigations
- Photocatalytic CO2 Reduction by 1 (2 μM) in CO2-Saturated Aqueous CH3CN Solutions (Molecular process, Photocatalytic CO2 conversion experiments)
- BIH + TEOA under Various Conditions (Molecular process, Photocatalytic CO2 conversion experiments)