Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction: Difference between revisions

From ChemWiki
 
(23 intermediate revisions by the same user not shown)
Line 7: Line 7:
[[Category:Publication]]
[[Category:Publication]]
====Summary ====
====Summary ====
A {{Annotation|property=Tag|value=photocatalytic CO2 reduction; voc4cat; voc4cat:0000099|display=photochemical reduction of CO2}} to {{Annotation|property=Tag|value=CO;;|display=CO}} was shown using an Fe2+ and Co2+ complexes as catalysts in combination with Ruxx as photosensitizer.  
A {{Annotation|property=Tag|value=photocatalytic CO2 reduction; voc4cat; voc4cat:0000099|display=photochemical reduction of CO2}} to {{Annotation|property=Tag|value=CO;;|display=CO}} was shown using an Fe2+ and Co2+ complex as catalysts in combination with different photosensitizers. The authors examined the efficiency for photocatalytic CO2RR pending on metal−ligand exchange coupling as an example of charge delocalization. The iron complex {{#moleculelink:|link=YJOFQAAXFUIRKO-UHFFFAOYSA-N|image=false|width=300|height=200}} and cobalt complexes{{#moleculelink:|link=GEWRDVXFGQMHJL-UHFFFAOYSA-N|image=false|width=300|height=200}}, both bearing the redox-active ligand tpyPY2Me  were tested in comparison. It was found that the two-electron reduction of the Co(tpyPY2Me)]2+ catalyst {{#moleculelink:|link=GEWRDVXFGQMHJL-UHFFFAOYSA-N|image=false|width=300|height=200}} occurs at potentials 770 mV more negative than the Fe(tpyPY2Me)]2+ analogue{{#moleculelink:|link=YJOFQAAXFUIRKO-UHFFFAOYSA-N|image=false|width=300|height=200}} due to maximizing the exchange coupling in the latter compound.  
====Advances and special progress====


metal−ligand exchange coupling as an example of charge delocalization that can determine the efficiency for photocatalytic CO2RR. A comparative evaluation of iron and cobalt complexes supported by the redox-active ligand tpyPY2Me establishes that the two-electron reduction of [Co(tpyPY2Me)]2+ ([Co]2+) occurs at potentials 770 mV more negative than the [Fe(tpyPY2Me)]2+ ([Fe]2+) analogue by maximizing the exchange coupling in the latter compound.
====Advances and special progress====
====Additional remarks====
====Additional remarks====


Line 297: Line 296:
M  V30 END CTAB
M  V30 END CTAB
M  END
M  END
</chemform>
</chemform><chemform smiles="NC1C=C2[N+](=C3C(=CC2=CC=1)C=CC(N)=C3)C" inchi="1S/C14H13N3/c1-17-13-7-11(15)4-2-9(13)6-10-3-5-12(16)8-14(10)17/h2-8H,1H3,(H3,15,16)/p+1" inchikey="XSIOKTWDEOJMGG-UHFFFAOYSA-O" height="200px" width="300px" float="none">
  -INDIGO-11172411382D
 
  0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 COUNTS 17 19 0 0 0
M  V30 BEGIN ATOM
M  V30 1 N -2.59808 -0.5 0.0 0
M  V30 2 C -1.73205 0.0 0.0 0
M  V30 3 C -1.73205 1.0 0.0 0
M  V30 4 C -0.866025 1.5 0.0 0
M  V30 5 C 0.0 1.0 0.0 0
M  V30 6 C 0.0 0.0 0.0 0
M  V30 7 N 0.866026 -0.5 0.0 0 CHG=1
M  V30 8 C 0.866025 -1.5 0.0 0
M  V30 9 C 1.73205 0.0 0.0 0
M  V30 10 C 2.59808 -0.5 0.0 0
M  V30 11 C 3.4641 0.0 0.0 0
M  V30 12 N 4.33013 -0.5 0.0 0
M  V30 13 C 3.4641 1 0.0 0
M  V30 14 C 2.59808 1.5 0.0 0
M  V30 15 C 1.73205 1 0.0 0
M  V30 16 C 0.866026 1.5 0.0 0
M  V30 17 C -0.866025 -0.5 0.0 0
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 1 1 1 2
M  V30 2 2 2 3
M  V30 3 1 3 4
M  V30 4 2 4 5
M  V30 5 1 5 6
M  V30 6 1 6 7
M  V30 7 1 7 8
M  V30 8 2 7 9
M  V30 9 1 9 10
M  V30 10 2 10 11
M  V30 11 1 11 12
M  V30 12 1 11 13
M  V30 13 2 13 14
M  V30 14 1 9 15
M  V30 15 1 15 14
M  V30 16 2 15 16
M  V30 17 1 16 5
M  V30 18 2 6 17
M  V30 19 1 17 2
M  V30 END BOND
M  V30 END CTAB
M  END
</chemform>  <chemform smiles="[Ir+]1(N2C=C(C=CC=2C2=C(F)C=C(F)C=C21)C(F)(F)F)1(C2C=C(F)C=C(F)C=2C2N1=CC(=CC=2)C(F)(F)F)1N2C=CC(C(C)(C)C)=CC=2C2=CC(C(C)(C)C)=CC=N21" inchi="1S/C18H24N2.2C12H5F5N.Ir/c1-17(2,3)13-7-9-19-15(11-13)16-12-14(8-10-20-16)18(4,5)6;2*13-8-2-3-9(10(14)5-8)11-4-1-7(6-18-11)12(15,16)17;/h7-12H,1-6H3;2*1-2,4-6H;/q;;;+1" inchikey="OZUQNBMGKZFLJQ-UHFFFAOYSA-N" height="200px" width="300px" float="none">
  -INDIGO-11172411402D
 
  0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 COUNTS 57 65 2 0 0
M  V30 BEGIN ATOM
M  V30 1 Ir -0.352408 -0.02048 0.0 0 CHG=1
M  V30 2 C -3.22713 1.53262 0.0 0
M  V30 3 C -3.23259 0.70764 0.0 0
M  V30 4 C -2.52086 0.290423 0.0 0
M  V30 5 C -1.80368 0.698189 0.0 0
M  V30 6 C -1.79822 1.52317 0.0 0
M  V30 7 C -2.50995 1.94039 0.0 0
M  V30 8 C -1.08104 1.93094 0.0 0
M  V30 9 N -0.369308 1.51372 0.0 0
M  V30 10 C 0.347875 1.92148 0.0 0
M  V30 11 C 0.353331 2.74647 0.0 0
M  V30 12 C -0.358395 3.16368 0.0 0
M  V30 13 C -1.07558 2.75592 0.0 0
M  V30 14 C 2.50507 1.62732 0.0 0
M  V30 15 C 1.78864 2.03641 0.0 0
M  V30 16 C 1.07615 1.62049 0.0 0
M  V30 17 N 1.08009 0.795504 0.0 0
M  V30 18 C 1.79652 0.386423 0.0 0
M  V30 19 C 2.50901 0.802334 0.0 0
M  V30 20 C 1.80047 -0.438567 0.0 0
M  V30 21 N 1.08798 -0.854477 0.0 0
M  V30 22 C 1.09192 -1.67947 0.0 0
M  V30 23 C 1.80835 -2.08855 0.0 0
M  V30 24 C 2.52084 -1.67264 0.0 0
M  V30 25 C 2.5169 -0.847647 0.0 0
M  V30 26 C -2.47922 -0.244491 0.0 0
M  V30 27 C -3.19695 -0.65131 0.0 0
M  V30 28 C -3.20349 -1.47628 0.0 0
M  V30 29 C -2.49231 -1.89444 0.0 0
M  V30 30 C -1.77459 -1.48762 0.0 0
M  V30 31 C -1.76805 -0.662645 0.0 0
M  V30 32 C -1.06342 -1.90577 0.0 0
M  V30 33 C -1.06996 -2.73075 0.0 0
M  V30 34 C -0.358784 -3.1489 0.0 0
M  V30 35 C 0.358936 -2.74208 0.0 0
M  V30 36 C 0.365481 -1.91711 0.0 0
M  V30 37 N -0.345696 -1.49895 0.0 0
M  V30 38 C 3.21756 2.04324 0.0 0
M  V30 39 C 3.23728 -2.08172 0.0 0
M  V30 40 F -2.50449 2.76537 0.0 0
M  V30 41 F -3.94977 0.299875 0.0 0
M  V30 42 F -3.90812 -0.233155 0.0 0
M  V30 43 F -2.49886 -2.71941 0.0 0
M  V30 44 C 3.21362 2.86823 0.0 0
M  V30 45 C 3.934 1.63416 0.0 0
M  V30 46 C 3.93005 2.45915 0.0 0
M  V30 47 C 3.24122 -2.90671 0.0 0
M  V30 48 C 3.94977 -1.66581 0.0 0
M  V30 49 C 3.23334 -1.25673 0.0 0
M  V30 50 C 1.07052 3.15423 0.0 0
M  V30 51 F 1.47828 2.43705 0.0 0
M  V30 52 F 1.7877 3.562 0.0 0
M  V30 53 F 0.66275 3.87141 0.0 0
M  V30 54 C 1.07011 -3.16024 0.0 0
M  V30 55 F 0.651958 -3.87141 0.0 0
M  V30 56 F 1.78129 -3.57839 0.0 0
M  V30 57 F 1.48827 -2.44906 0.0 0
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 1 1 50 51
M  V30 2 1 50 52
M  V30 3 1 50 53
M  V30 4 1 11 50
M  V30 5 1 54 55
M  V30 6 1 54 56
M  V30 7 1 54 57
M  V30 8 1 35 54
M  V30 9 2 2 3
M  V30 10 1 3 4
M  V30 11 2 4 5
M  V30 12 1 5 6
M  V30 13 2 6 7
M  V30 14 1 7 2
M  V30 15 1 6 8
M  V30 16 2 8 9
M  V30 17 1 9 10
M  V30 18 2 10 11
M  V30 19 1 11 12
M  V30 20 2 12 13
M  V30 21 1 13 8
M  V30 22 2 14 15
M  V30 23 1 15 16
M  V30 24 2 16 17
M  V30 25 1 17 18
M  V30 26 2 18 19
M  V30 27 1 19 14
M  V30 28 1 18 20
M  V30 29 2 20 21
M  V30 30 1 21 22
M  V30 31 2 22 23
M  V30 32 1 23 24
M  V30 33 2 24 25
M  V30 34 1 25 20
M  V30 35 2 26 27
M  V30 36 1 27 28
M  V30 37 2 28 29
M  V30 38 1 29 30
M  V30 39 2 30 31
M  V30 40 1 31 26
M  V30 41 1 30 32
M  V30 42 2 32 33
M  V30 43 1 33 34
M  V30 44 2 34 35
M  V30 45 1 35 36
M  V30 46 2 36 37
M  V30 47 1 37 32
M  V30 48 10 17 1
M  V30 49 10 21 1
M  V30 50 10 37 1
M  V30 51 1 31 1
M  V30 52 1 14 38
M  V30 53 1 24 39
M  V30 54 1 7 40
M  V30 55 1 3 41
M  V30 56 1 27 42
M  V30 57 1 29 43
M  V30 58 1 38 44
M  V30 59 1 38 45
M  V30 60 1 38 46
M  V30 61 1 39 47
M  V30 62 1 39 48
M  V30 63 1 39 49
M  V30 64 1 5 1
M  V30 65 10 9 1
M  V30 END BOND
M  V30 BEGIN SGROUP
M  V30 1 SUP 1 ATOMS=(4 50 51 52 53) BRKXYZ=(9 0.000000 0.000000 0.000000 0.0-
M  V30 00000 0.000000 0.000000 0.000000 0.000000 0.000000) BRKXYZ=(9 0.000000-
M  V30  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000-
M  V30 00) LABEL=CF3
M  V30 2 SUP 2 ATOMS=(4 54 55 56 57) BRKXYZ=(9 0.000000 0.000000 0.000000 0.0-
M  V30 00000 0.000000 0.000000 0.000000 0.000000 0.000000) BRKXYZ=(9 0.000000-
M  V30  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000-
M  V30 00) LABEL=CF3
M  V30 END SGROUP
M  V30 END CTAB
M  END
</chemform> <chemform smiles="" inchi="" inchikey="NSABRUJKERBGOU-UHFFFAOYSA-N" height="200px" width="300px" float="none"></chemform>


=== Investigation ===
=== Investigation ===
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Comparison of Fe and Co complexes|importFile=}}


===Further Information===
 
The Supporting Information gives quantum yields for described experiments in Table 1.
General details for the experimental setup: Conducted inside a 25 mL borosilicate culture tube with a stir bar, a rubber septum, and an aluminum crimped top. The reaction vessel contained 5 mL of CH3CN, 2 μM of the catalyst, 200 μM of the photosensitizer, 100 mM BIH (112 mg), and 1 M phenol (470 mg). The reaction tubes were sparged with CO2 for 10 min, followed by injection of a gaseous internal standard (0.1 mL of C2H6). The reactions were placed on a stirplate 13 cm from two Kessil blue LED lamps (440 nm) for 15 or 30 min at a time and maintained at ambient temperature using a fan. Analysis of the headspace by Gas Chromatography (GC).{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=CO2 Reduction under diverse conditions with diverse sensitizers|importFile=Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction_2.xlsx}}
 
The values in Table 2 include TOF numbers given in TON/min
 
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Results Co2+ experiments taken from SI|importFile=Exchange publication_table 2.xlsx}}
 
=== Further Information ===
The results for the catalytic activity of the Co2+ compound {{#moleculelink:|link=GEWRDVXFGQMHJL-UHFFFAOYSA-N|image=false|width=300|height=200}} in Table 2 were gained from the Supporting Information.  
====Sacrificial electron donor====
====Sacrificial electron donor====
In this study, the experiments were done with the sacrificial electron donor BIH ([[Molecule:100508|100508]]).
In this study, the experiments were done with the sacrificial electron donor BIH ([[Molecule:100508|100508]]).
====Additives====
====Additives====
Different sources of protons were used, e.g. {{#moleculelink:|link=ISWSIDIOOBJBQZ-UHFFFAOYSA-N|image=false|width=300|height=200}}, {{#moleculelink:|link=RHQDFWAXVIIEBN-UHFFFAOYSA-N|image=false|width=300|height=200}} and {{#moleculelink:|link=WXNZTHHGJRFXKQ-UHFFFAOYSA-N|image=false|width=300|height=200}}

Latest revision as of 23:34, 22 November 2024


Abstract[edit | edit source]

Summary[edit | edit source]

A photochemical reduction of CO2 to CO was shown using an Fe2+ and Co2+ complex as catalysts in combination with different photosensitizers. The authors examined the efficiency for photocatalytic CO2RR pending on metal−ligand exchange coupling as an example of charge delocalization. The iron complex 100968 and cobalt complexes100969, both bearing the redox-active ligand tpyPY2Me were tested in comparison. It was found that the two-electron reduction of the Co(tpyPY2Me)]2+ catalyst 100969 occurs at potentials 770 mV more negative than the Fe(tpyPY2Me)]2+ analogue100968 due to maximizing the exchange coupling in the latter compound.

Advances and special progress[edit | edit source]

Additional remarks[edit | edit source]

Content of the published article in detail[edit | edit source]

Catalysts tested in this study[edit | edit source]

100968 100969

Photosensitizer[edit | edit source]

Ru(bpy)3 3,6-Diamino-10-methylacridinium 100971 Ir(ppy)3

Investigation[edit | edit source]

General details for the experimental setup: Conducted inside a 25 mL borosilicate culture tube with a stir bar, a rubber septum, and an aluminum crimped top. The reaction vessel contained 5 mL of CH3CN, 2 μM of the catalyst, 200 μM of the photosensitizer, 100 mM BIH (112 mg), and 1 M phenol (470 mg). The reaction tubes were sparged with CO2 for 10 min, followed by injection of a gaseous internal standard (0.1 mL of C2H6). The reactions were placed on a stirplate 13 cm from two Kessil blue LED lamps (440 nm) for 15 or 30 min at a time and maintained at ambient temperature using a fan. Analysis of the headspace by Gas Chromatography (GC).

catcat conc [µM]PSPS conc [mM]e-De-D conc [M]..solvent Aadditives..TON COTON H2..
1.

Molecule:100968

2

Ru(bpy)3

0.2

BIH

0.1

MeCN

1552086
2.

Molecule:100968

0.2

Ru(bpy)3

0.2

BIH

0.1

MeCN

303491013
3.


Ru(bpy)3

0.2

BIH

0.1

MeCN

4352
4.

Molecule:100968

2


BIH

0.1

MeCN

1120
5.

Molecule:100968

2

Ru(bpy)3

0.2


MeCN

1500
6.

Molecule:100968

2

Ru(bpy)3

0.2

BIH

0.1

MeCN

60
7.

Molecule:100968

2

Ru(bpy)3

0.2

BIH

0.1

MeCN

Ar0222
8.

Molecule:100968

2

Molecule:100971

0.2

BIH

0.1

MeCN

12749163
9.

Molecule:100968

0.2

Molecule:100971

0.2

BIH

0.1

MeCN

287126527
10.

Molecule:100968

2

Ir(ppy)3

0.2

BIH

0.1

MeCN

18502141
11.

Molecule:100968

2

Molecule:100970

0.2

BIH

0.1

MeCN

67100

The values in Table 2 include TOF numbers given in TON/min

Investigation-Name: Results Co2+ experiments taken from SI

Further Information[edit | edit source]

The results for the catalytic activity of the Co2+ compound 100969 in Table 2 were gained from the Supporting Information.

Sacrificial electron donor[edit | edit source]

In this study, the experiments were done with the sacrificial electron donor BIH (100508).

Additives[edit | edit source]

Different sources of protons were used, e.g. PhOH, TFE and 4-CHLOROPHENOL

Investigations

Tags

TagContains tags that describe the content of the page.: photocatalytic CO2 reduction (Ontology: voc4cat, OBOID: voc4cat:0000099), TagContains tags that describe the content of the page.: CO