Highly efficient and selective visible-light driven CO2-to-CO conversion by a Co-based cryptate in H2O-CH3CN solution: Difference between revisions
About |
---|
(added molecule) |
(added content) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
===Abstract=== | ===Abstract=== | ||
====Summary==== | ====Summary==== | ||
A photochemical reduction of CO<sub>2</sub> to CO was shown using the copper | A photochemical reduction of CO<sub>2</sub> to CO was shown using the copper cryptates {{#moleculelink:|link=ZEYWCDNYJFKWNP-UHFFFAOYSA-L|image=false|width=300|height=200}} or {{#moleculelink:|link=PFCMEJLVBIHANS-UHFFFAOYSA-L|image=false|width=300|height=200}} as catalyst in combination with the ruthenium photosensitizer {{#moleculelink:|link=YRYUXGTVQZIGNQ-UHFFFAOYSA-N|image=false|width=300|height=200}}. Turnover numbers (TONs) up to 51392 and a selectivity of 98% for CO were reached in MeCN/H<sub>2</sub>O. The experiments were conducted under visible-light irradiation (λ = 450 nm) using TEOA as sacrificial electron donor (see section SEDs below). | ||
====Advances and special progress==== | ====Advances and special progress==== | ||
The authors presented a highly active copper-based catalyst for the visible-light catalyzed reduction of CO<sub>2</sub> to CO with high TON and TOF values. | |||
====Additional remarks==== | ====Additional remarks==== | ||
===Content of the published article in detail=== | ===Content of the published article in detail=== | ||
The article contains results for the reduction of CO<sub>2</sub> to CO under visible-light catalysis using a copper complex as a catalyst. The catalytic system performs best (referring to the TON of CO production) in MeCN/H<sub>2</sub>O with complex | The article contains results for the reduction of CO<sub>2</sub> to CO under visible-light catalysis using a copper complex as a catalyst. The catalytic system performs best (referring to the TON of CO production) in MeCN/H<sub>2</sub>O with complex {{#moleculelink:|link=ZEYWCDNYJFKWNP-UHFFFAOYSA-L|image=false|width=300|height=200}}. | ||
====Catalyst==== | ====Catalyst==== | ||
<chemform smiles="C1C2CNCCN3CCNCC4=CC5C=CC(CN([H])6~[Co+]7(~N(CC6)(CCNCC6C=CC(C=2)=C(C=6)C=1)CCN~7([H])CC1C=CC2C=C(CNCC3)C=CC=2C=1)O)=CC=5C=C4.[Cl-](=O)(=O)(=O)=O" inchi="1S/C48H60N8.ClHO4.Co.H2O/c1-7-43-26-38-2-8-44(43)25-37(1)31-49-13-19-55-20-15-51-33-39-3-9-47-29-41(5-11-45(47)27-39)35-53-17-23-56(22-14-50-32-38)24-18-54-36-42-6-12-46-28-40(34-52-16-21-55)4-10-48(46)30-42;2-1(3,4)5;;/h1-12,25-30,49-54H,13-24,31-36H2;(H,2,3,4,5);;1H2/q;;+2;/p-2" inchikey="ZEYWCDNYJFKWNP-UHFFFAOYSA-L" height="200px" width="300px" float="none"> | <chemform smiles="C1C2CNCCN3CCNCC4=CC5C=CC(CN([H])6~[Co+]7(~N(CC6)(CCNCC6C=CC(C=2)=C(C=6)C=1)CCN~7([H])CC1C=CC2C=C(CNCC3)C=CC=2C=1)O)=CC=5C=C4.[Cl-](=O)(=O)(=O)=O" inchi="1S/C48H60N8.ClHO4.Co.H2O/c1-7-43-26-38-2-8-44(43)25-37(1)31-49-13-19-55-20-15-51-33-39-3-9-47-29-41(5-11-45(47)27-39)35-53-17-23-56(22-14-50-32-38)24-18-54-36-42-6-12-46-28-40(34-52-16-21-55)4-10-48(46)30-42;2-1(3,4)5;;/h1-12,25-30,49-54H,13-24,31-36H2;(H,2,3,4,5);;1H2/q;;+2;/p-2" inchikey="ZEYWCDNYJFKWNP-UHFFFAOYSA-L" height="200px" width="300px" float="none"> | ||
Line 285: | Line 287: | ||
====Photosensitizer==== | ====Photosensitizer==== | ||
<chemform smiles="" inchi="" inchikey="YRYUXGTVQZIGNQ-UHFFFAOYSA-N" height="200px" width="300px" float="none"></chemform> | |||
====Investigation==== | ====Investigation==== | ||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=photocatalytic CO2 conversion under different conditions|importFile=}} | |||
====Sacrificial electron donor==== | ====Sacrificial electron donor==== |
Latest revision as of 15:54, 16 May 2024
Abstract[edit | edit source]
Summary[edit | edit source]
A photochemical reduction of CO2 to CO was shown using the copper cryptates 100956 or 100957 as catalyst in combination with the ruthenium photosensitizer [Ru(phen)3][PF6]2. Turnover numbers (TONs) up to 51392 and a selectivity of 98% for CO were reached in MeCN/H2O. The experiments were conducted under visible-light irradiation (λ = 450 nm) using TEOA as sacrificial electron donor (see section SEDs below).
Advances and special progress[edit | edit source]
The authors presented a highly active copper-based catalyst for the visible-light catalyzed reduction of CO2 to CO with high TON and TOF values.
Additional remarks[edit | edit source]
Content of the published article in detail[edit | edit source]
The article contains results for the reduction of CO2 to CO under visible-light catalysis using a copper complex as a catalyst. The catalytic system performs best (referring to the TON of CO production) in MeCN/H2O with complex 100956.
Catalyst[edit | edit source]
Photosensitizer[edit | edit source]
Investigation[edit | edit source]
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | . | . | . | . | λexc [nm] | . | TON CO | . | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.000025 | 0.4 | 0.3 | 450 | 33792 | |||||||||||
2. | 0.000025 | 0.4 | 0.3 | 450 | 18656 | |||||||||||
3. | 0.4 | 0.3 | 450 | 0 | ||||||||||||
4. | 0.000025 | 0.3 | 450 | 0 | ||||||||||||
5. | 0.000025 | 0.4 | 0.3 | 0 | ||||||||||||
6. | 0.000025 | 0.4 | 450 | 0 | ||||||||||||
7. | 0.0005 | 0.4 | 0.3 | 450 | 600 | |||||||||||
8. | 0.001 | 0.4 | 0.3 | 450 | 1582 | |||||||||||
9. | 0.0000125 | 0.4 | 0.3 | 450 | 51392 |
Sacrificial electron donor[edit | edit source]
In this study, the experiments were done with the sacrificial electron donor TEOA.
Additives[edit | edit source]
In this study, no additives were tested.
Investigations
- photocatalytic CO2 conversion under different conditions (Molecular process, Photocatalytic CO2 conversion experiments)