Highly efficient and selective visible-light driven CO2-to-CO conversion by a Co-based cryptate in H2O-CH3CN solution: Difference between revisions
About |
---|
(added molecule) |
(added content) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
===Abstract=== | ===Abstract=== | ||
====Summary==== | ====Summary==== | ||
A photochemical reduction of CO<sub>2</sub> to CO was shown using the copper | A photochemical reduction of CO<sub>2</sub> to CO was shown using the copper cryptates {{#moleculelink:|link=ZEYWCDNYJFKWNP-UHFFFAOYSA-L|image=false|width=300|height=200}} or {{#moleculelink:|link=PFCMEJLVBIHANS-UHFFFAOYSA-L|image=false|width=300|height=200}} as catalyst in combination with the ruthenium photosensitizer {{#moleculelink:|link=YRYUXGTVQZIGNQ-UHFFFAOYSA-N|image=false|width=300|height=200}}. Turnover numbers (TONs) up to 51392 and a selectivity of 98% for CO were reached in MeCN/H<sub>2</sub>O. The experiments were conducted under visible-light irradiation (λ = 450 nm) using TEOA as sacrificial electron donor (see section SEDs below). | ||
====Advances and special progress==== | ====Advances and special progress==== | ||
The authors presented a highly active copper-based catalyst for the visible-light catalyzed reduction of CO<sub>2</sub> to CO with high TON and TOF values. | |||
====Additional remarks==== | ====Additional remarks==== | ||
===Content of the published article in detail=== | ===Content of the published article in detail=== | ||
The article contains results for the reduction of CO<sub>2</sub> to CO under visible-light catalysis using a copper complex as a catalyst. The catalytic system performs best (referring to the TON of CO production) in MeCN/H<sub>2</sub>O with complex | The article contains results for the reduction of CO<sub>2</sub> to CO under visible-light catalysis using a copper complex as a catalyst. The catalytic system performs best (referring to the TON of CO production) in MeCN/H<sub>2</sub>O with complex {{#moleculelink:|link=ZEYWCDNYJFKWNP-UHFFFAOYSA-L|image=false|width=300|height=200}}. | ||
====Catalyst==== | ====Catalyst==== | ||
<chemform smiles="C1C2CNCCN3CCNCC4=CC5C=CC(CN([H])6~[Co+]7(~N(CC6)(CCNCC6C=CC(C=2)=C(C=6)C=1)CCN~7([H])CC1C=CC2C=C(CNCC3)C=CC=2C=1)O)=CC=5C=C4.[Cl-](=O)(=O)(=O)=O" inchi="1S/C48H60N8.ClHO4.Co.H2O/c1-7-43-26-38-2-8-44(43)25-37(1)31-49-13-19-55-20-15-51-33-39-3-9-47-29-41(5-11-45(47)27-39)35-53-17-23-56(22-14-50-32-38)24-18-54-36-42-6-12-46-28-40(34-52-16-21-55)4-10-48(46)30-42;2-1(3,4)5;;/h1-12,25-30,49-54H,13-24,31-36H2;(H,2,3,4,5);;1H2/q;;+2;/p-2" inchikey="ZEYWCDNYJFKWNP-UHFFFAOYSA-L" height="200px" width="300px" float="none"> | <chemform smiles="C1C2CNCCN3CCNCC4=CC5C=CC(CN([H])6~[Co+]7(~N(CC6)(CCNCC6C=CC(C=2)=C(C=6)C=1)CCN~7([H])CC1C=CC2C=C(CNCC3)C=CC=2C=1)O)=CC=5C=C4.[Cl-](=O)(=O)(=O)=O" inchi="1S/C48H60N8.ClHO4.Co.H2O/c1-7-43-26-38-2-8-44(43)25-37(1)31-49-13-19-55-20-15-51-33-39-3-9-47-29-41(5-11-45(47)27-39)35-53-17-23-56(22-14-50-32-38)24-18-54-36-42-6-12-46-28-40(34-52-16-21-55)4-10-48(46)30-42;2-1(3,4)5;;/h1-12,25-30,49-54H,13-24,31-36H2;(H,2,3,4,5);;1H2/q;;+2;/p-2" inchikey="ZEYWCDNYJFKWNP-UHFFFAOYSA-L" height="200px" width="300px" float="none"> | ||
Line 157: | Line 159: | ||
M V30 72 2 61 64 | M V30 72 2 61 64 | ||
M V30 73 2 61 65 | M V30 73 2 61 65 | ||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
</chemform><chemform smiles="C1C=CC2=C(C=CC(=C2)CN2(CCN(CCNCC3=CC4C=CC=CC=4C=C3)3CCN(CC4C=C5C=CC=CC5=CC=4)([H])~[Co+]~2~3O)[H])C=1.[Cl-](=O)(=O)(=O)=O" inchi="1S/C39H42N4.ClHO4.Co.H2O/c1-4-10-37-25-31(13-16-34(37)7-1)28-40-19-22-43(23-20-41-29-32-14-17-35-8-2-5-11-38(35)26-32)24-21-42-30-33-15-18-36-9-3-6-12-39(36)27-33;2-1(3,4)5;;/h1-18,25-27,40-42H,19-24,28-30H2;(H,2,3,4,5);;1H2/q;;+2;/p-2" inchikey="PFCMEJLVBIHANS-UHFFFAOYSA-L" height="200px" width="300px" float="none"> | |||
-INDIGO-05162416122D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 52 58 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 Cl 13.8085 -2.33646 0.0 0 CHG=-1 | |||
M V30 2 O 13.8085 -3.17733 0.0 0 | |||
M V30 3 O 14.6494 -2.33646 0.0 0 | |||
M V30 4 O 12.9676 -2.33646 0.0 0 | |||
M V30 5 O 13.8085 -1.49559 0.0 0 | |||
M V30 6 C 7.3314 -2.71721 0.0 0 | |||
M V30 7 C 8.02223 -2.23783 0.0 0 | |||
M V30 8 C 8.78281 -2.59641 0.0 0 | |||
M V30 9 C 9.47364 -2.11703 0.0 0 | |||
M V30 10 C 10.2342 -2.47561 0.0 0 | |||
M V30 11 C 10.304 -3.31359 0.0 0 | |||
M V30 12 C 11.0621 -3.40227 0.0 0 | |||
M V30 13 N 11.5114 -4.29611 0.0 0 | |||
M V30 14 H 11.807 -3.50892 0.0 0 | |||
M V30 15 Co 11.4539 -5.13501 0.0 0 CHG=1 | |||
M V30 16 N 12.2339 -5.44897 0.0 0 | |||
M V30 17 C 12.7736 -4.80411 0.0 0 | |||
M V30 18 C 12.327 -4.0916 0.0 0 | |||
M V30 19 C 11.9764 -6.28786 0.0 0 | |||
M V30 20 C 11.3107 -6.44237 0.0 0 | |||
M V30 21 N 10.9142 -5.77986 0.0 0 | |||
M V30 22 H 10.526 -6.52577 0.0 0 | |||
M V30 23 C 9.75775 -5.58795 0.0 0 | |||
M V30 24 O 10.6738 -4.82104 0.0 0 | |||
M V30 25 C 9.61313 -3.79297 0.0 0 | |||
M V30 26 C 8.85255 -3.43438 0.0 0 | |||
M V30 27 C 8.16172 -3.91377 0.0 0 | |||
M V30 28 C 7.40114 -3.55518 0.0 0 | |||
M V30 29 C 9.20064 -6.19506 0.0 0 | |||
M V30 30 C 8.7544 -7.86683 0.0 0 | |||
M V30 31 C 9.46001 -7.16157 0.0 0 | |||
M V30 32 C 7.78739 -7.60841 0.0 0 | |||
M V30 33 C 8.22976 -5.93561 0.0 0 | |||
M V30 34 C 7.52719 -6.64732 0.0 0 | |||
M V30 35 C 7.08687 -8.31167 0.0 0 | |||
M V30 36 C 6.12415 -8.05668 0.0 0 | |||
M V30 37 C 6.56062 -6.39132 0.0 0 | |||
M V30 38 C 5.86314 -7.101 0.0 0 | |||
M V30 39 C 10.8067 -8.92192 0.0 0 | |||
M V30 40 C 9.943 -10.4212 0.0 0 | |||
M V30 41 C 10.8071 -9.92263 0.0 0 | |||
M V30 42 C 9.07582 -9.92133 0.0 0 | |||
M V30 43 C 9.93608 -8.42003 0.0 0 | |||
M V30 44 C 9.07324 -8.92565 0.0 0 | |||
M V30 45 C 8.21715 -10.4193 0.0 0 | |||
M V30 46 C 7.35324 -9.92385 0.0 0 | |||
M V30 47 C 8.20586 -8.4282 0.0 0 | |||
M V30 48 C 7.34847 -8.93318 0.0 0 | |||
M V30 49 C 12.941 -6.15607 0.0 0 | |||
M V30 50 C 12.941 -7.15607 0.0 0 | |||
M V30 51 N 12.2339 -7.86318 0.0 0 | |||
M V30 52 C 11.6567 -8.77192 0.0 0 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 1 2 | |||
M V30 2 2 1 3 | |||
M V30 3 2 1 4 | |||
M V30 4 2 1 5 | |||
M V30 5 2 6 7 | |||
M V30 6 1 7 8 | |||
M V30 7 1 8 9 | |||
M V30 8 2 9 10 | |||
M V30 9 1 10 11 | |||
M V30 10 1 11 12 | |||
M V30 11 1 12 13 | |||
M V30 12 1 13 14 | |||
M V30 13 8 13 15 | |||
M V30 14 8 15 16 | |||
M V30 15 1 16 17 | |||
M V30 16 1 17 18 | |||
M V30 17 1 18 13 | |||
M V30 18 1 16 19 | |||
M V30 19 1 19 20 | |||
M V30 20 1 20 21 | |||
M V30 21 8 21 15 | |||
M V30 22 1 21 22 | |||
M V30 23 1 21 23 | |||
M V30 24 1 15 24 | |||
M V30 25 2 11 25 | |||
M V30 26 1 25 26 | |||
M V30 27 2 26 8 | |||
M V30 28 1 26 27 | |||
M V30 29 2 27 28 | |||
M V30 30 1 28 6 | |||
M V30 31 1 23 29 | |||
M V30 32 2 31 29 | |||
M V30 33 2 32 30 | |||
M V30 34 1 29 33 | |||
M V30 35 1 30 31 | |||
M V30 36 2 33 34 | |||
M V30 37 1 34 32 | |||
M V30 38 2 36 35 | |||
M V30 39 1 34 37 | |||
M V30 40 1 35 32 | |||
M V30 41 2 37 38 | |||
M V30 42 1 38 36 | |||
M V30 43 1 41 39 | |||
M V30 44 1 42 40 | |||
M V30 45 2 39 43 | |||
M V30 46 2 40 41 | |||
M V30 47 1 43 44 | |||
M V30 48 2 44 42 | |||
M V30 49 2 46 45 | |||
M V30 50 1 44 47 | |||
M V30 51 1 45 42 | |||
M V30 52 2 47 48 | |||
M V30 53 1 48 46 | |||
M V30 54 1 16 49 | |||
M V30 55 1 49 50 | |||
M V30 56 1 50 51 | |||
M V30 57 1 39 52 | |||
M V30 58 1 52 51 | |||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | M V30 END CTAB | ||
Line 163: | Line 287: | ||
====Photosensitizer==== | ====Photosensitizer==== | ||
<chemform smiles="" inchi="" inchikey="YRYUXGTVQZIGNQ-UHFFFAOYSA-N" height="200px" width="300px" float="none"></chemform> | |||
====Investigation==== | ====Investigation==== | ||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=photocatalytic CO2 conversion under different conditions|importFile=}} | |||
====Sacrificial electron donor==== | ====Sacrificial electron donor==== |
Latest revision as of 15:54, 16 May 2024
Abstract[edit | edit source]
Summary[edit | edit source]
A photochemical reduction of CO2 to CO was shown using the copper cryptates 100956 or 100957 as catalyst in combination with the ruthenium photosensitizer [Ru(phen)3][PF6]2. Turnover numbers (TONs) up to 51392 and a selectivity of 98% for CO were reached in MeCN/H2O. The experiments were conducted under visible-light irradiation (λ = 450 nm) using TEOA as sacrificial electron donor (see section SEDs below).
Advances and special progress[edit | edit source]
The authors presented a highly active copper-based catalyst for the visible-light catalyzed reduction of CO2 to CO with high TON and TOF values.
Additional remarks[edit | edit source]
Content of the published article in detail[edit | edit source]
The article contains results for the reduction of CO2 to CO under visible-light catalysis using a copper complex as a catalyst. The catalytic system performs best (referring to the TON of CO production) in MeCN/H2O with complex 100956.
Catalyst[edit | edit source]
Photosensitizer[edit | edit source]
Investigation[edit | edit source]
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | . | . | . | . | λexc [nm] | . | TON CO | . | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.000025 | 0.4 | 0.3 | 450 | 33792 | |||||||||||
2. | 0.000025 | 0.4 | 0.3 | 450 | 18656 | |||||||||||
3. | 0.4 | 0.3 | 450 | 0 | ||||||||||||
4. | 0.000025 | 0.3 | 450 | 0 | ||||||||||||
5. | 0.000025 | 0.4 | 0.3 | 0 | ||||||||||||
6. | 0.000025 | 0.4 | 450 | 0 | ||||||||||||
7. | 0.0005 | 0.4 | 0.3 | 450 | 600 | |||||||||||
8. | 0.001 | 0.4 | 0.3 | 450 | 1582 | |||||||||||
9. | 0.0000125 | 0.4 | 0.3 | 450 | 51392 |
Sacrificial electron donor[edit | edit source]
In this study, the experiments were done with the sacrificial electron donor TEOA.
Additives[edit | edit source]
In this study, no additives were tested.
Investigations
- photocatalytic CO2 conversion under different conditions (Molecular process, Photocatalytic CO2 conversion experiments)