Photocatalytic CO2 Reduction Mediated by Electron Transfer via the Excited Triplet State of Zn(II) Porphyrin: Difference between revisions

From ChemWiki
Laura (talk | contribs)
auto-generated
 
m auto-generated
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{DOI|doi=10.1021/jacs.9b12712}}
{{DOI|doi=10.1021/jacs.9b12712}}
[[Category:Photocatalytic CO2 conversion to CO]][[Category:Publication]]
[[Category:Photocatalytic CO2 conversion to CO]]
[[Category:Publication]]
{{BaseTemplate}}
{{BaseTemplate}}
===Abstract===
====Summary====
A photochemical reduction of CO<sub>2</sub> to CO was shown using the zinc porphyrin dyad with a connected rhenium complex {{#moleculelink:|link=LYVLANYMDXKDOV-CVVGJFHCSA-M|image=false|width=300|height=200}} as a combined catalyst and photosensitizer molecule. Turnover numbers (TONs) of >1300 and a selectivity of >99.9% for CO were reached in DMA. The experiments were conducted under visible-light irradiation (λ = 420 nm) using BIH as sacrificial electron donor (see section SEDs below).
====Advances and special progress====
A selective method for the reduction of CO<sub>2</sub> to CO with a porphyrin-rhenium complex dyad was presented, effectively linking the catalyst and photosensitizer in one molecule.
====Additional remarks====
===Content of the published article in detail===
The article contains results for the reduction of CO<sub>2</sub> to CO under visible-light catalysis using {{#moleculelink:|link=LYVLANYMDXKDOV-CVVGJFHCSA-M|image=false|width=300|height=200}} as a catalyst and photosensitizer. The catalytic system performs best (referring to the TON of CO production) in DMA.
====Catalyst and Photosensitizer====
<chemform smiles="C1C2=C(C3C=CC(C(C)(C)C)=CC=3)C3N4[Zn]56~N7=C(C(C8C=CC9C=CC%10C=CC=N%11~[Re](~[C-]#[O+])(~[C-]#[O+])(~[C-]#[O+])(Br)~N=8C=9C=%10%11)=C8N5C(=C(C5C=CC(C(C)(C)C)=CC=5)C(=N2~6)C=1)C=C8)C=CC7=C(C1C=CC(C(C)(C)C)=CC=1)C4=CC=3" inchi="1S/C62H54N6.3CO.BrH.Re.Zn/c1-60(2,3)42-21-14-37(15-22-42)54-45-28-30-47(64-45)55(38-16-23-43(24-17-38)61(4,5)6)49-32-34-51(66-49)57(53-27-20-41-13-12-40-11-10-36-63-58(40)59(41)68-53)52-35-33-50(67-52)56(48-31-29-46(54)65-48)39-18-25-44(26-19-39)62(7,8)9;3*1-2;;;/h10-36H,1-9H3;;;;1H;;/q-2;;;;;+1;+2/p-1/b54-45-,54-46-,55-47-,55-49-,56-48-,56-50-,57-51+,57-52+;;;;;;" inchikey="LYVLANYMDXKDOV-CVVGJFHCSA-M" height="200px" width="300px" float="none">
  -INDIGO-05152413072D
  0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 COUNTS 77 91 0 0 0
M  V30 BEGIN ATOM
M  V30 1 C 5.78617 -7.21572 0.0 0
M  V30 2 C 6.46968 -7.88753 0.0 0
M  V30 3 C 7.39259 -7.38012 0.0 0
M  V30 4 N 7.24189 -6.45401 0.0 0
M  V30 5 C 6.24178 -6.28441 0.0 0
M  V30 6 C 6.49788 -2.92928 0.0 0
M  V30 7 C 5.79067 -3.64888 0.0 0
M  V30 8 C 6.22618 -4.50099 0.0 0
M  V30 9 N 7.18759 -4.31439 0.0 0
M  V30 10 C 7.39309 -3.34948 0.0 0
M  V30 11 C 5.77057 -5.4325 0.0 0
M  V30 12 C 10.7476 -3.53428 0.0 0
M  V30 13 C 10.0641 -2.86247 0.0 0
M  V30 14 C 9.14081 -3.33418 0.0 0
M  V30 15 N 9.32791 -4.33129 0.0 0
M  V30 16 C 10.2564 -4.46599 0.0 0
M  V30 17 C 8.2807 -2.87807 0.0 0
M  V30 18 C 10.1077 -7.85583 0.0 0
M  V30 19 C 10.7794 -7.17212 0.0 0
M  V30 20 C 10.3074 -6.21331 0.0 0
M  V30 21 N 9.31061 -6.43601 0.0 0
M  V30 22 C 9.14071 -7.40052 0.0 0
M  V30 23 C 8.2886 -7.87163 0.0 0
M  V30 24 C 10.7636 -5.3532 0.0 0
M  V30 25 Zn 8.2 -5.4 0.0 0
M  V30 26 C 8.28039 -1.87807 0.0 0
M  V30 27 C 4.77089 -5.45767 0.0 0
M  V30 28 C 11.7635 -5.33737 0.0 0
M  V30 29 C 8.29026 -8.87162 0.0 0
M  V30 30 C 3.27323 -6.32424 0.0 0
M  V30 31 C 4.27087 -6.3245 0.0 0
M  V30 32 C 2.77218 -5.45774 0.0 0
M  V30 33 C 4.26783 -4.5877 0.0 0
M  V30 34 C 3.26778 -4.59416 0.0 0
M  V30 35 C 7.41381 -0.380413 0.0 0
M  V30 36 C 7.41355 -1.37805 0.0 0
M  V30 37 C 8.28032 0.12064 0.0 0
M  V30 38 C 9.15036 -1.37502 0.0 0
M  V30 39 C 9.14389 -0.374964 0.0 0
M  V30 40 C 9.15683 -10.3693 0.0 0
M  V30 41 C 9.15709 -9.37165 0.0 0
M  V30 42 C 8.29033 -10.8703 0.0 0
M  V30 43 C 7.42029 -9.37468 0.0 0
M  V30 44 C 7.42675 -10.3747 0.0 0
M  V30 45 C 13.2612 -4.47079 0.0 0
M  V30 46 N 12.2635 -4.47053 0.0 0
M  V30 47 C 13.7622 -5.3373 0.0 0
M  V30 48 C 12.2666 -6.20734 0.0 0
M  V30 49 C 13.2666 -6.20088 0.0 0
M  V30 50 C 1.77218 -5.45937 0.0 0
M  V30 51 C 1.27076 -4.59416 0.0 0
M  V30 52 C 1.27359 -6.32621 0.0 0
M  V30 53 C 0.772179 -5.461 0.0 0
M  V30 54 C 8.27868 1.12064 0.0 0
M  V30 55 C 9.14389 1.62205 0.0 0
M  V30 56 C 7.41184 1.61922 0.0 0
M  V30 57 C 8.27705 2.12064 0.0 0
M  V30 58 C 8.29196 -11.8703 0.0 0
M  V30 59 C 7.42675 -12.3718 0.0 0
M  V30 60 C 9.1588 -12.3689 0.0 0
M  V30 61 C 8.29359 -12.8703 0.0 0
M  V30 62 C 13.7601 -3.6066 0.0 0
M  V30 63 C 14.7612 -3.60564 0.0 0
M  V30 64 C 14.7674 -5.33633 0.0 0
M  V30 65 C 15.2617 -4.46669 0.0 0
M  V30 66 N 13.2608 -2.74239 0.0 0
M  V30 67 C 13.7604 -1.87453 0.0 0
M  V30 68 C 15.2629 -2.73431 0.0 0
M  V30 69 C 14.7565 -1.87137 0.0 0
M  V30 70 Re 12.075 -3.15 0.0 0
M  V30 71 Br 11.35 -4.075 0.0 0
M  V30 72 C 11.1286 -2.72054 0.0 0 CHG=-1
M  V30 73 C 11.85 -2.25 0.0 0 CHG=-1
M  V30 74 C 12.8 -2.15 0.0 0 CHG=-1
M  V30 75 O 10.4214 -2.01343 0.0 0 CHG=1
M  V30 76 O 11.5912 -1.28407 0.0 0 CHG=1
M  V30 77 O 12.8 -1.15 0.0 0 CHG=1
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 1 2 1 2
M  V30 2 1 2 3
M  V30 3 2 3 4
M  V30 4 1 4 5
M  V30 5 1 1 5
M  V30 6 2 5 11
M  V30 7 1 3 23
M  V30 8 1 6 7
M  V30 9 2 7 8
M  V30 10 1 8 9
M  V30 11 1 9 10
M  V30 12 2 6 10
M  V30 13 1 10 17
M  V30 14 1 8 11
M  V30 15 2 12 13
M  V30 16 1 13 14
M  V30 17 1 14 15
M  V30 18 2 15 16
M  V30 19 1 12 16
M  V30 20 1 16 24
M  V30 21 2 14 17
M  V30 22 2 18 19
M  V30 23 1 19 20
M  V30 24 1 20 21
M  V30 25 1 21 22
M  V30 26 1 18 22
M  V30 27 2 22 23
M  V30 28 2 20 24
M  V30 29 1 9 25
M  V30 30 1 25 21
M  V30 31 8 4 25
M  V30 32 8 25 15
M  V30 33 1 17 26
M  V30 34 1 11 27
M  V30 35 1 24 28
M  V30 36 1 23 29
M  V30 37 2 31 27
M  V30 38 2 32 30
M  V30 39 1 27 33
M  V30 40 1 30 31
M  V30 41 2 33 34
M  V30 42 1 34 32
M  V30 43 2 36 26
M  V30 44 2 37 35
M  V30 45 1 26 38
M  V30 46 1 35 36
M  V30 47 2 38 39
M  V30 48 1 39 37
M  V30 49 2 41 29
M  V30 50 2 42 40
M  V30 51 1 29 43
M  V30 52 1 40 41
M  V30 53 2 43 44
M  V30 54 1 44 42
M  V30 55 2 46 28
M  V30 56 2 47 45
M  V30 57 1 28 48
M  V30 58 1 45 46
M  V30 59 2 48 49
M  V30 60 1 49 47
M  V30 61 1 32 50
M  V30 62 1 50 51
M  V30 63 1 50 52
M  V30 64 1 50 53
M  V30 65 1 37 54
M  V30 66 1 54 55
M  V30 67 1 54 56
M  V30 68 1 54 57
M  V30 69 1 42 58
M  V30 70 1 58 59
M  V30 71 1 58 60
M  V30 72 1 58 61
M  V30 73 2 63 62
M  V30 74 1 47 64
M  V30 75 1 62 45
M  V30 76 2 64 65
M  V30 77 1 65 63
M  V30 78 2 67 66
M  V30 79 1 63 68
M  V30 80 1 66 62
M  V30 81 2 68 69
M  V30 82 1 69 67
M  V30 83 8 46 70
M  V30 84 8 70 66
M  V30 85 1 71 70
M  V30 86 3 72 75
M  V30 87 3 73 76
M  V30 88 3 74 77
M  V30 89 8 70 72
M  V30 90 8 70 73
M  V30 91 8 70 74
M  V30 END BOND
M  V30 END CTAB
M  END
</chemform>
====Investigation====
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=photocatalytic CO2 conversion|importFile=}}
====Sacrificial electron donor====
In this study, the experiments were done with the sacrificial electron donor {{#moleculelink:|link=VDFIVJSRRJXMAU-UHFFFAOYSA-N|image=false|width=300|height=200}}.
====Additives====
In this study, {{#moleculelink:|link=ISWSIDIOOBJBQZ-UHFFFAOYSA-N|image=false|width=300|height=200}} was used as an additive.
{{Tags|tags=photochemical CO2 reduction, CO2-to-CO conversion, visible-light photocatalysis, zinc porphyrin, rhenium complex, porphyrin-rhenium dyad, homogeneous catalysis, artificial photosynthesis, sacrificial electron donor, BIH, phenol additive, dimethylacetamide solvent, high turnover number, selective CO production}}

Latest revision as of 11:42, 21 November 2025


Abstract[edit | edit source]

Summary[edit | edit source]

A photochemical reduction of CO2 to CO was shown using the zinc porphyrin dyad with a connected rhenium complex (Zn(tBuPP))-(Re(Phen)Br(CO)3) as a combined catalyst and photosensitizer molecule. Turnover numbers (TONs) of >1300 and a selectivity of >99.9% for CO were reached in DMA. The experiments were conducted under visible-light irradiation (λ = 420 nm) using BIH as sacrificial electron donor (see section SEDs below).

Advances and special progress[edit | edit source]

A selective method for the reduction of CO2 to CO with a porphyrin-rhenium complex dyad was presented, effectively linking the catalyst and photosensitizer in one molecule.

Additional remarks[edit | edit source]

Content of the published article in detail[edit | edit source]

The article contains results for the reduction of CO2 to CO under visible-light catalysis using (Zn(tBuPP))-(Re(Phen)Br(CO)3) as a catalyst and photosensitizer. The catalytic system performs best (referring to the TON of CO production) in DMA.

Catalyst and Photosensitizer[edit | edit source]

(Zn(tBuPP))-(Re(Phen)Br(CO)3)

Investigation[edit | edit source]

catcat conc [µM]e-De-D conc [M]solvent Aadditives..λexc [nm].TON CO....
1.

(Zn(tBuPP))-(Re(Phen)Br(CO)3)

0.05

BIH

0.05

DMA

phenol420 nm910
2.

(Zn(tBuPP))-(Re(Phen)Br(CO)3)

0.075

BIH

0.05

DMA

phenol420 nm1340
3.

(Zn(tBuPP))-(Re(Phen)Br(CO)3)

0.05

BIH

0.05

DMA

420 nm520
Investigation-Name: photocatalytic CO2 conversion

Sacrificial electron donor[edit | edit source]

In this study, the experiments were done with the sacrificial electron donor BIH.

Additives[edit | edit source]

In this study, PhOH was used as an additive.

Tags: photochemical CO2 reduction, CO2-to-CO conversion, visible-light photocatalysis, zinc porphyrin, rhenium complex, porphyrin-rhenium dyad, homogeneous catalysis, artificial photosynthesis, sacrificial electron donor, BIH, phenol additive, dimethylacetamide solvent, high turnover number, selective CO production

Investigations