Photocatalytic Reduction of CO2 by Highly Efficient Homogeneous FeII Catalyst based on 2,6-Bis(1’,2’,3’-triazolyl-methyl)pyridine. Comparison with Analogues.: Difference between revisions
About |
---|
(added molecule) |
m (auto-updated) |
||
(7 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
===Abstract=== | ===Abstract=== | ||
====Summary==== | ====Summary==== | ||
A photochemical reduction of CO<sub>2</sub> to CO was shown using the iron complex {{#moleculelink:|link=ZCGUPOIZKSBSCM-UHFFFAOYSA-N|image=false|width=300|height=200}} as catalyst in combination with the copper photosensitizer {{#moleculelink:|link=SVWABAAUBHILMW-UHFFFAOYSA-P|image=false|width=300|height=200}}. Turnover numbers (TONs) of 576 and a selectivity of 67% for CO were reached in MeCN/TEOA. The experiments were conducted under visible-light irradiation (λ = 420 nm) using BIH as sacrificial electron donor (see section SEDs below). The homoleptic iron complex and the cobalt complexes and were tested for CO<sub>2</sub> reduction as well, but did not show substantial conversion of CO<sub>2</sub> to CO. | A photochemical reduction of CO<sub>2</sub> to CO was shown using the iron complex {{#moleculelink:|link=ZCGUPOIZKSBSCM-UHFFFAOYSA-N|image=false|width=300|height=200}} as catalyst in combination with the copper photosensitizer {{#moleculelink:|link=SVWABAAUBHILMW-UHFFFAOYSA-P|image=false|width=300|height=200}}. Turnover numbers (TONs) of 576 and a selectivity of 67% for CO were reached in MeCN/TEOA. The experiments were conducted under visible-light irradiation (λ = 420 nm) using BIH as sacrificial electron donor (see section SEDs below). The homoleptic iron complex {{#moleculelink:|link=SIMPDUKIPFZEDX-UHFFFAOYSA-N|image=false|width=300|height=200}} and the cobalt complexes {{#moleculelink:|link=JDMNOCVBLMVSON-UHFFFAOYSA-N|image=false|width=300|height=200}} and {{#moleculelink:|link=QMZVNZOKJUBNLZ-UHFFFAOYSA-N|image=false|width=300|height=200}} were tested for CO<sub>2</sub> reduction as well, but did not show substantial conversion of CO<sub>2</sub> to CO. | ||
====Advances and special progress==== | ====Advances and special progress==== | ||
The authors reported a iron complex with one of the highest activities for CO<sub>2</sub> reduction among earth-abundant systems with monometallic iron catalysts. | The authors reported a iron complex with one of the highest activities for CO<sub>2</sub> reduction among earth-abundant systems with monometallic iron catalysts. | ||
Line 263: | Line 263: | ||
M V30 73 8 1 46 | M V30 73 8 1 46 | ||
M V30 74 8 1 15 | M V30 74 8 1 15 | ||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
</chemform><chemform smiles="C12CN3N(~[Co]4(~N=1C(CN1C=C(C5C=CC=CC=5)N=N1~4)=CC=C2)(~N1C=CC=CC=1)(~N=C=S)~N=C=S)=NC(C1C=CC=CC=1)=C3" inchi="1S/C23H19N7.C5H5N.2CNS.Co/c1-3-8-18(9-4-1)22-16-29(27-25-22)14-20-12-7-13-21(24-20)15-30-17-23(26-28-30)19-10-5-2-6-11-19;1-2-4-6-5-3-1;2*2-1-3;/h1-13,16-17H,14-15H2;1-5H;;;/q;;2*-1;+2" inchikey="JDMNOCVBLMVSON-UHFFFAOYSA-N" height="200px" width="300px" float="none"> | |||
-INDIGO-05142414182D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 43 50 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 C 6.98485 -5.27507 0.0 0 | |||
M V30 2 C 8.71515 -5.27459 0.0 0 | |||
M V30 3 N 7.85164 -4.77497 0.0 0 | |||
M V30 4 C 8.71515 -6.27553 0.0 0 | |||
M V30 5 C 6.98485 -6.28002 0.0 0 | |||
M V30 6 C 7.85382 -6.77503 0.0 0 | |||
M V30 7 C 6.1189 -4.77495 0.0 0 | |||
M V30 8 C 9.58141 -4.77499 0.0 0 | |||
M V30 9 N 5.86008 -3.80902 0.0 0 | |||
M V30 10 N 10.0814 -3.90897 0.0 0 | |||
M V30 11 C 4.92652 -3.45064 0.0 0 | |||
M V30 12 C 4.97883 -2.45199 0.0 0 | |||
M V30 13 N 5.94474 -2.19317 0.0 0 | |||
M V30 14 N 6.48937 -3.03188 0.0 0 | |||
M V30 15 N 9.6747 -2.99543 0.0 0 | |||
M V30 16 N 10.4178 -2.32626 0.0 0 | |||
M V30 17 C 11.2839 -2.82625 0.0 0 | |||
M V30 18 C 11.0759 -3.80442 0.0 0 | |||
M V30 19 C 4.20167 -1.82268 0.0 0 | |||
M V30 20 C 12.1974 -2.41953 0.0 0 | |||
M V30 21 C 13.0611 -0.920224 0.0 0 | |||
M V30 22 C 12.197 -1.41882 0.0 0 | |||
M V30 23 C 13.9283 -1.42011 0.0 0 | |||
M V30 24 C 13.0681 -2.92142 0.0 0 | |||
M V30 25 C 13.9309 -2.4158 0.0 0 | |||
M V30 26 C 2.5299 -1.37643 0.0 0 | |||
M V30 27 C 3.23516 -2.08205 0.0 0 | |||
M V30 28 C 2.78832 -0.409422 0.0 0 | |||
M V30 29 C 4.46112 -0.851801 0.0 0 | |||
M V30 30 C 3.74941 -0.149226 0.0 0 | |||
M V30 31 Co 7.975 -3.15 0.0 0 | |||
M V30 32 C 7.15985 -0.150074 0.0 0 | |||
M V30 33 C 8.89015 -0.149589 0.0 0 | |||
M V30 34 C 8.02664 0.350033 0.0 0 | |||
M V30 35 C 8.89015 -1.15053 0.0 0 | |||
M V30 36 C 7.15985 -1.15502 0.0 0 | |||
M V30 37 N 8.02882 -1.65003 0.0 0 | |||
M V30 38 N 6.525 -1.5 0.0 0 | |||
M V30 39 C 6.025 -0.633975 0.0 0 | |||
M V30 40 S 5.525 0.232051 0.0 0 | |||
M V30 41 S 10.85 -7.61603 0.0 0 | |||
M V30 42 C 10.35 -6.75 0.0 0 | |||
M V30 43 N 9.85 -5.88397 0.0 0 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 3 1 | |||
M V30 2 2 4 2 | |||
M V30 3 1 1 5 | |||
M V30 4 1 2 3 | |||
M V30 5 2 5 6 | |||
M V30 6 1 6 4 | |||
M V30 7 1 1 7 | |||
M V30 8 1 2 8 | |||
M V30 9 1 7 9 | |||
M V30 10 1 8 10 | |||
M V30 11 1 9 11 | |||
M V30 12 2 11 12 | |||
M V30 13 1 12 13 | |||
M V30 14 2 13 14 | |||
M V30 15 1 14 9 | |||
M V30 16 1 10 15 | |||
M V30 17 2 15 16 | |||
M V30 18 1 16 17 | |||
M V30 19 2 17 18 | |||
M V30 20 1 18 10 | |||
M V30 21 1 12 19 | |||
M V30 22 1 17 20 | |||
M V30 23 2 22 20 | |||
M V30 24 2 23 21 | |||
M V30 25 1 20 24 | |||
M V30 26 1 21 22 | |||
M V30 27 2 24 25 | |||
M V30 28 1 25 23 | |||
M V30 29 2 27 19 | |||
M V30 30 2 28 26 | |||
M V30 31 1 19 29 | |||
M V30 32 1 26 27 | |||
M V30 33 2 29 30 | |||
M V30 34 1 30 28 | |||
M V30 35 2 34 32 | |||
M V30 36 2 35 33 | |||
M V30 37 1 32 36 | |||
M V30 38 1 33 34 | |||
M V30 39 2 36 37 | |||
M V30 40 1 37 35 | |||
M V30 41 2 38 39 | |||
M V30 42 2 39 40 | |||
M V30 43 8 38 31 | |||
M V30 44 2 41 42 | |||
M V30 45 2 42 43 | |||
M V30 46 8 43 31 | |||
M V30 47 8 14 31 | |||
M V30 48 8 37 31 | |||
M V30 49 8 31 15 | |||
M V30 50 8 31 3 | |||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
</chemform><chemform smiles="[Co]12(~N3C(CN4C=C(C5C=CC=CC=5)N=N4~1)=CC=CC=3CN1N~2=NC(C2C=CC=CC=2)=C1)12~N3N(C=C(C4C=CC=CC=4)N=3)CC3C=CC=C(CN4C=C(C5C=CC=CC=5)N=N4~1)N=3~2" inchi="1S/2C23H19N7.Co/c2*1-3-8-18(9-4-1)22-16-29(27-25-22)14-20-12-7-13-21(24-20)15-30-17-23(26-28-30)19-10-5-2-6-11-19;/h2*1-13,16-17H,14-15H2;" inchikey="QMZVNZOKJUBNLZ-UHFFFAOYSA-N" height="200px" width="300px" float="none"> | |||
-INDIGO-05142414222D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 61 74 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 Co 10.25 -5.675 0.0 0 | |||
M V30 2 C 9.38485 -10.4751 0.0 0 | |||
M V30 3 C 11.0902 -10.4746 0.0 0 | |||
M V30 4 N 10.2266 -9.97497 0.0 0 | |||
M V30 5 C 11.0902 -11.4755 0.0 0 | |||
M V30 6 C 9.35985 -11.48 0.0 0 | |||
M V30 7 C 10.2288 -11.975 0.0 0 | |||
M V30 8 C 8.5689 -9.97495 0.0 0 | |||
M V30 9 C 11.9564 -9.97499 0.0 0 | |||
M V30 10 N 7.9939 -9.10892 0.0 0 | |||
M V30 11 N 12.4564 -9.10897 0.0 0 | |||
M V30 12 C 6.99939 -9.00438 0.0 0 | |||
M V30 13 C 6.79145 -8.02621 0.0 0 | |||
M V30 14 N 7.65746 -7.52622 0.0 0 | |||
M V30 15 N 8.40061 -8.19539 0.0 0 | |||
M V30 16 N 12.0497 -8.19543 0.0 0 | |||
M V30 17 N 12.7928 -7.52626 0.0 0 | |||
M V30 18 C 13.6589 -8.02625 0.0 0 | |||
M V30 19 C 13.4509 -9.00442 0.0 0 | |||
M V30 20 C 14.5724 -7.61953 0.0 0 | |||
M V30 21 C 5.8779 -7.61949 0.0 0 | |||
M V30 22 C 15.4361 -6.12022 0.0 0 | |||
M V30 23 C 14.572 -6.61882 0.0 0 | |||
M V30 24 C 16.3033 -6.62011 0.0 0 | |||
M V30 25 C 15.4431 -8.12142 0.0 0 | |||
M V30 26 C 16.3059 -7.6158 0.0 0 | |||
M V30 27 C 4.1476 -7.62113 0.0 0 | |||
M V30 28 C 5.01144 -8.12018 0.0 0 | |||
M V30 29 C 4.14692 -6.62019 0.0 0 | |||
M V30 30 C 5.87722 -6.61454 0.0 0 | |||
M V30 31 C 5.00792 -6.12011 0.0 0 | |||
M V30 32 C 11.0393 -1.09963 0.0 0 | |||
M V30 33 C 9.30905 -1.10011 0.0 0 | |||
M V30 34 N 10.1726 -1.59974 0.0 0 | |||
M V30 35 C 9.30905 -0.0991716 0.0 0 | |||
M V30 36 C 11.0393 -0.0946836 0.0 0 | |||
M V30 37 C 10.1704 0.400329 0.0 0 | |||
M V30 38 C 11.9053 -1.59975 0.0 0 | |||
M V30 39 C 8.44279 -1.59971 0.0 0 | |||
M V30 40 N 12.4053 -2.46578 0.0 0 | |||
M V30 41 N 7.94279 -2.46574 0.0 0 | |||
M V30 42 C 13.3998 -2.57033 0.0 0 | |||
M V30 43 C 13.6077 -3.54849 0.0 0 | |||
M V30 44 N 12.7417 -4.04849 0.0 0 | |||
M V30 45 N 11.9986 -3.37932 0.0 0 | |||
M V30 46 N 8.3495 -3.37928 0.0 0 | |||
M V30 47 N 7.60636 -4.04844 0.0 0 | |||
M V30 48 C 6.74034 -3.54845 0.0 0 | |||
M V30 49 C 6.94829 -2.57029 0.0 0 | |||
M V30 50 C 5.82679 -3.95517 0.0 0 | |||
M V30 51 C 14.5213 -3.95522 0.0 0 | |||
M V30 52 C 5.82717 -4.95589 0.0 0 | |||
M V30 53 C 4.09589 -4.95459 0.0 0 | |||
M V30 54 C 4.95614 -3.45328 0.0 0 | |||
M V30 55 C 16.2516 -3.95357 0.0 0 | |||
M V30 56 C 15.3878 -3.45453 0.0 0 | |||
M V30 57 C 16.2523 -4.95451 0.0 0 | |||
M V30 58 C 14.522 -4.96016 0.0 0 | |||
M V30 59 C 15.3913 -5.45459 0.0 0 | |||
M V30 60 C 4.96306 -5.45448 0.0 0 | |||
M V30 61 C 4.0933 -3.95891 0.0 0 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 4 2 | |||
M V30 2 2 5 3 | |||
M V30 3 1 2 6 | |||
M V30 4 1 3 4 | |||
M V30 5 2 6 7 | |||
M V30 6 1 7 5 | |||
M V30 7 1 2 8 | |||
M V30 8 1 3 9 | |||
M V30 9 1 8 10 | |||
M V30 10 1 9 11 | |||
M V30 11 1 10 12 | |||
M V30 12 2 12 13 | |||
M V30 13 1 13 14 | |||
M V30 14 2 14 15 | |||
M V30 15 1 15 10 | |||
M V30 16 1 11 16 | |||
M V30 17 2 16 17 | |||
M V30 18 1 17 18 | |||
M V30 19 2 18 19 | |||
M V30 20 1 19 11 | |||
M V30 21 1 18 20 | |||
M V30 22 1 13 21 | |||
M V30 23 2 23 20 | |||
M V30 24 2 24 22 | |||
M V30 25 1 20 25 | |||
M V30 26 1 22 23 | |||
M V30 27 2 25 26 | |||
M V30 28 1 26 24 | |||
M V30 29 2 28 21 | |||
M V30 30 2 29 27 | |||
M V30 31 1 21 30 | |||
M V30 32 1 27 28 | |||
M V30 33 2 30 31 | |||
M V30 34 1 31 29 | |||
M V30 35 2 34 32 | |||
M V30 36 2 35 33 | |||
M V30 37 1 32 36 | |||
M V30 38 1 33 34 | |||
M V30 39 2 36 37 | |||
M V30 40 1 37 35 | |||
M V30 41 1 32 38 | |||
M V30 42 1 33 39 | |||
M V30 43 1 38 40 | |||
M V30 44 1 39 41 | |||
M V30 45 1 40 42 | |||
M V30 46 2 42 43 | |||
M V30 47 1 43 44 | |||
M V30 48 2 44 45 | |||
M V30 49 1 45 40 | |||
M V30 50 1 41 46 | |||
M V30 51 2 46 47 | |||
M V30 52 1 47 48 | |||
M V30 53 2 48 49 | |||
M V30 54 1 49 41 | |||
M V30 55 1 48 50 | |||
M V30 56 1 43 51 | |||
M V30 57 2 52 50 | |||
M V30 58 1 50 54 | |||
M V30 59 2 56 51 | |||
M V30 60 2 57 55 | |||
M V30 61 1 51 58 | |||
M V30 62 1 55 56 | |||
M V30 63 2 58 59 | |||
M V30 64 1 59 57 | |||
M V30 65 1 60 52 | |||
M V30 66 2 53 60 | |||
M V30 67 2 54 61 | |||
M V30 68 1 61 53 | |||
M V30 69 8 34 1 | |||
M V30 70 8 46 1 | |||
M V30 71 8 1 45 | |||
M V30 72 8 15 1 | |||
M V30 73 8 1 16 | |||
M V30 74 8 1 4 | |||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | M V30 END CTAB | ||
Line 406: | Line 658: | ||
====Investigation==== | ====Investigation==== | ||
{{#experimentlist: |form=Photocatalytic_CO2_conversion_experiments|name=Optimization of CO2 reduction conditions|importFile=}} | |||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=CO2 reduction experiments testing different catalysts|importFile=}} | |||
====Sacrificial electron donor==== | ====Sacrificial electron donor==== | ||
In this study, the experiments were done with the sacrificial electron donor BIH ([[Molecule:100508|100508]]). | In this study, the experiments were done with the sacrificial electron donor BIH ([[Molecule:100508|100508]]). | ||
====Additives==== | ====Additives==== | ||
In this study, control experiments with Hg and without CO<sub>2</sub> were conducted. | In this study, control experiments with Hg and without CO<sub>2</sub> were conducted. |
Latest revision as of 14:03, 16 May 2024
Abstract[edit | edit source]
Summary[edit | edit source]
A photochemical reduction of CO2 to CO was shown using the iron complex 100941 as catalyst in combination with the copper photosensitizer 100940. Turnover numbers (TONs) of 576 and a selectivity of 67% for CO were reached in MeCN/TEOA. The experiments were conducted under visible-light irradiation (λ = 420 nm) using BIH as sacrificial electron donor (see section SEDs below). The homoleptic iron complex 100942 and the cobalt complexes 100944 and 100945 were tested for CO2 reduction as well, but did not show substantial conversion of CO2 to CO.
Advances and special progress[edit | edit source]
The authors reported a iron complex with one of the highest activities for CO2 reduction among earth-abundant systems with monometallic iron catalysts.
Additional remarks[edit | edit source]
In addition to the production of CO, a substantial amount of H2 (TON of 287) was formed in the reduction process with complex 100941.
Content of the published article in detail[edit | edit source]
The article contains results for the reduction of CO2 to CO under visible-light catalysis using the iron complex 100941 as a catalyst. The catalytic system performs best (referring to the TON of CO production) in MeCN/TEOA.
Catalyst[edit | edit source]
Photosensitizer[edit | edit source]
Investigation[edit | edit source]
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | . | . | additives | . | . | λexc [nm] | . | TON CO | TON CH4 | TON H2 | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.1 | 1.0 | 0.02 | 420 | 107 | 43 | ||||||||||||
2. | 0.1 | 1.0 | 0.02 | 420 | 109 | 54 | ||||||||||||
3. | 0.03 | 0.33 | 0.00666 | 420 | 238 | 137 | ||||||||||||
4. | 0.03 | 1.0 | 0.02 | 420 | 314 | 151 | ||||||||||||
5. | 0.01 | 1.0 | 0.02 | 420 | 576 | 287 | ||||||||||||
6. | 0.1 | 1.0 | 0.1 | 420 | 80 | 33 | ||||||||||||
7. | 0.1 | 1.0 | 0.1 | water | 420 | 7.4 | 6.4 | |||||||||||
8. | 0.1 | 1.0 | 0.02 | 420 | 3.2 | 1.6 | ||||||||||||
9. | 0.1 | 1.0 | 0.02 | 420 | 80 | 34 | ||||||||||||
10. | 0.1 | 1.0 | 0.02 | 420 | 100 | 43 | ||||||||||||
11. | 1.0 | 0.02 | 420 | 0 | 1 | |||||||||||||
12. | 0.1 | 0.02 | 420 | 0 | 0 | |||||||||||||
13. | 0.1 | 1.0 | 0.02 | 0 | 0 | |||||||||||||
14. | 0.1 | 1.0 | 0.02 | 420 | 0 | 0 | ||||||||||||
15. | 0.1 | 1.0 | 0.02 | Hg | 420 | 93 | 50 | |||||||||||
16. | 0.1 | 1.0 | 0.02 | solar simulator | 450 | 348 | ||||||||||||
17. | 0.01 | 1.0 | 420 | 6.8 | 0 | 0 | ||||||||||||
18. | 0.01 | 1.0 | 0.02 | 420 | 44 | 1.16 | 0 | |||||||||||
19. | 0.01 | 1.0 | 420 | 0 | 0 | 0 | ||||||||||||
20. | 0.01 | 1.0 | 0.02 | 420 | 0 | 0 | 0 |
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | . | . | . | λexc [nm] | . | TON CO | TON H2 | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.1 | 1.0 | 0.02 | 420 | 7.8 | 2 | |||||||||
2. | 0.1 | 1.0 | 0.02 | 420 | 1.1 | 7.4 | |||||||||
3. | 0.1 | 1.0 | 0.02 | 420 | 0.7 | 4.9 |
Sacrificial electron donor[edit | edit source]
In this study, the experiments were done with the sacrificial electron donor BIH (100508).
Additives[edit | edit source]
In this study, control experiments with Hg and without CO2 were conducted.
Investigations
- CO2 reduction experiments testing different catalysts (Molecular process, Photocatalytic CO2 conversion experiments)
- Optimization of CO2 reduction conditions (Molecular process, Photocatalytic CO2 conversion experiments)