Phenoxazine-Sensitized CO2-to-CO Reduction with an Iron Porphyrin Catalyst: A Redox Properties-Catalytic Performance Study: Difference between revisions
About |
---|
No edit summary |
m (added Publication category) |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{DOI|doi=10.1002/cptc.202200009}} | ||
[[Category:Photocatalytic CO2 conversion to CO]] | [[Category:Photocatalytic CO2 conversion to CO]] | ||
{{BaseTemplate}} | {{BaseTemplate}} | ||
===Abstract=== | |||
====Summary==== | |||
A photochemical reduction of CO<sub>2</sub> to CO was shown using the iron porphyrin complex {{#moleculelink:|link=FAKQJSUSUXMEFI-NGWNFTKISA-M|image=false|width=300|height=200}} as catalyst, screening the effect of different phenoxazine-based photosensitizers on the CO production. Turnover numbers (TONs) of 115 and a selectivity of 100% for CO were reached in acetonitrile in combination with the photosensitizer {{#moleculelink:|link=HDOFYEULLIFSQY-UHFFFAOYSA-N|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ > 400 nm) using BIH as sacrificial electron donor (see section SEDs below). | |||
====Advances and special progress==== | |||
In this study, the authors showed a strong relation between the oxidation potential of the photosensitizer and the CO production whereas no correlation between the CO production and the excited state potential of the photosensitizer was discovered. This identifies the electron transfer to regenerate the photosensitizer as a determining step and demonstrates the importance of improving the interaction between the photosensitizer and the sacrificial electron donor for optimization of the CO<sub>2</sub> reduction. | |||
====Additional remarks==== | |||
The tested phenoxazine-based photosensitizers performed similarly in combination with the iron porphyrin complex and allowed for TONs of 88-115 and selectivities of 80-100% apart from complex {{#moleculelink:|link=JUDLWUDCWSBXOA-UHFFFAOYSA-N|image=false|width=300|height=200}} that showed both a lower TON (32) and decreased selectivity (36%). | |||
===Content of the published article in detail === | |||
The article contains results for the reduction of CO<sub>2</sub> to CO under visible-light catalysis using an iron complex and different phenoxazine-based photosensitizers. The catalytic system performs best (referring to the TON of CO production) in acetonitrile. | |||
====Catalyst==== | ====Catalyst==== | ||
<chemform smiles="C12C(C3C=CC([N+](C)(C)C)=CC=3)=C3N4~[Fe+3]([Cl-])56~N7C(=C(C8C=CC([N+](C)(C)C)=CC=8)C8N~5C(C(C5C=CC([N+](C)(C)C)=CC=5)=C(N=1~6)C=C2)=CC=8)C=CC=7C(C1C=CC([N+](C)(C)C)=CC=1)=C4C=C3.[P-](F)(F)(F)(F)(F)F.[P-](F)(F)(F)(F)(F)F.[P-](F)(F)(F)(F)(F)F.[P-](F)(F)(F)(F)(F)F" inchi="1S/C56H60N8.ClH.4F6P.Fe/c1-61(2,3)41-21-13-37(14-22-41)53-45-29-31-47(57-45)54(38-15-23-42(24-16-38)62(4,5)6)49-33-35-51(59-49)56(40-19-27-44(28-20-40)64(10,11)12)52-36-34-50(60-52)55(48-32-30-46(53)58-48)39-17-25-43(26-18-39)63(7,8)9;;4*1-7(2,3,4,5)6;/h13-36H,1-12H3;1H;;;;;/q+2;;4*-1;+5/p-1/b53-45-,53-46-,54-47-,54-49-,55-48-,55-50-,56-51-,56-52-;;;;;;" inchikey="FAKQJSUSUXMEFI-NGWNFTKISA-M" height="200px" width="300px" float="none"> | |||
-INDIGO-11272317292D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 94 101 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 C 8.78099 -3.3419 0.0 0 | |||
M V30 2 C 10.0211 -2.45639 0.0 0 | |||
M V30 3 C 9.10163 -2.42979 0.0 0 | |||
M V30 4 C 10.2692 -3.39536 0.0 0 | |||
M V30 5 N 9.50464 -3.95747 0.0 0 | |||
M V30 6 C 7.60402 -4.50845 0.0 0 | |||
M V30 7 C 7.57292 -6.03612 0.0 0 | |||
M V30 8 N 8.18285 -5.29976 0.0 0 | |||
M V30 9 C 6.68057 -5.71071 0.0 0 | |||
M V30 10 C 6.71902 -4.76895 0.0 0 | |||
M V30 11 C 11.2549 -4.53654 0.0 0 | |||
M V30 12 C 12.1035 -5.77482 0.0 0 | |||
M V30 13 C 12.1224 -4.8497 0.0 0 | |||
M V30 14 C 11.1545 -6.08373 0.0 0 | |||
M V30 15 N 10.5676 -5.33906 0.0 0 | |||
M V30 16 C 9.82384 -8.11882 0.0 0 | |||
M V30 17 C 8.62031 -7.18965 0.0 0 | |||
M V30 18 C 8.90362 -8.11298 0.0 0 | |||
M V30 19 N 9.41945 -6.55587 0.0 0 | |||
M V30 20 C 10.1413 -7.15373 0.0 0 | |||
M V30 21 C 7.88955 -3.58078 0.0 0 | |||
M V30 22 C 11.074 -3.66582 0.0 0 | |||
M V30 23 C 10.9378 -6.93751 0.0 0 | |||
M V30 24 C 7.78634 -6.94247 0.0 0 | |||
M V30 25 C 7.15184 -2.76646 0.0 0 | |||
M V30 26 C 11.8954 -2.90477 0.0 0 | |||
M V30 27 C 11.6874 -7.6923 0.0 0 | |||
M V30 28 C 6.9877 -7.64873 0.0 0 | |||
M V30 29 C 6.4543 -9.31776 0.0 0 | |||
M V30 30 C 7.20022 -8.6336 0.0 0 | |||
M V30 31 C 5.48523 -9.0111 0.0 0 | |||
M V30 32 C 6.02735 -7.34146 0.0 0 | |||
M V30 33 C 5.27399 -8.01749 0.0 0 | |||
M V30 34 C 13.3904 -8.12979 0.0 0 | |||
M V30 35 C 12.6706 -7.42257 0.0 0 | |||
M V30 36 C 13.1368 -9.1182 0.0 0 | |||
M V30 37 C 11.4316 -8.6747 0.0 0 | |||
M V30 38 C 12.1598 -9.3913 0.0 0 | |||
M V30 39 C 12.367 -1.20306 0.0 0 | |||
M V30 40 C 11.6405 -1.91492 0.0 0 | |||
M V30 41 C 13.344 -1.47099 0.0 0 | |||
M V30 42 C 12.8844 -3.16954 0.0 0 | |||
M V30 43 C 13.6031 -2.44978 0.0 0 | |||
M V30 44 C 5.49908 -2.20731 0.0 0 | |||
M V30 45 C 6.16725 -2.96668 0.0 0 | |||
M V30 46 C 5.82316 -1.25706 0.0 0 | |||
M V30 47 C 7.47266 -1.8083 0.0 0 | |||
M V30 48 C 6.81208 -1.05868 0.0 0 | |||
M V30 49 N 5.1819 -0.481731 0.0 0 CHG=1 | |||
M V30 50 N 14.0515 -0.710863 0.0 0 CHG=1 | |||
M V30 51 N 13.8793 -9.85136 0.0 0 CHG=1 | |||
M V30 52 N 4.71503 -9.70308 0.0 0 CHG=1 | |||
M V30 53 C 4.58575 0.317025 0.0 0 | |||
M V30 54 C 4.40212 -1.0818 0.0 0 | |||
M V30 55 C 5.94743 0.103565 0.0 0 | |||
M V30 56 C 14.8118 -1.34958 0.0 0 | |||
M V30 57 C 14.6931 0.0707503 0.0 0 | |||
M V30 58 C 13.3291 -0.0844987 0.0 0 | |||
M V30 59 C 13.2029 -10.5391 0.0 0 | |||
M V30 60 C 14.5706 -9.15078 0.0 0 | |||
M V30 61 C 14.603 -10.5625 0.0 0 | |||
M V30 62 C 3.96742 -10.3581 0.0 0 | |||
M V30 63 C 5.36796 -10.4383 0.0 0 | |||
M V30 64 C 4.08094 -8.98368 0.0 0 | |||
M V30 65 Fe 9.41933 -5.27583 0.0 0 CHG=3 | |||
M V30 66 Cl 8.71222 -4.56872 0.0 0 CHG=-1 | |||
M V30 67 P 16.8795 -0.6875 0.0 0 CHG=-1 | |||
M V30 68 F 17.7455 -0.1875 0.0 0 | |||
M V30 69 F 16.0135 -0.1875 0.0 0 | |||
M V30 70 F 16.8795 -1.6875 0.0 0 | |||
M V30 71 F 16.0135 -1.1875 0.0 0 | |||
M V30 72 F 16.8795 0.3125 0.0 0 | |||
M V30 73 F 17.7455 -1.1875 0.0 0 | |||
M V30 74 P 16.6875 -9.9375 0.0 0 CHG=-1 | |||
M V30 75 F 17.5535 -9.4375 0.0 0 | |||
M V30 76 F 15.8215 -9.4375 0.0 0 | |||
M V30 77 F 16.6875 -10.9375 0.0 0 | |||
M V30 78 F 15.8215 -10.4375 0.0 0 | |||
M V30 79 F 16.6875 -8.9375 0.0 0 | |||
M V30 80 F 17.5535 -10.4375 0.0 0 | |||
M V30 81 P 2.1875 -9.6875 0.0 0 CHG=-1 | |||
M V30 82 F 3.05353 -9.1875 0.0 0 | |||
M V30 83 F 1.32147 -9.1875 0.0 0 | |||
M V30 84 F 2.1875 -10.6875 0.0 0 | |||
M V30 85 F 1.32147 -10.1875 0.0 0 | |||
M V30 86 F 2.1875 -8.6875 0.0 0 | |||
M V30 87 F 3.05353 -10.1875 0.0 0 | |||
M V30 88 P 2.5375 -0.33125 0.0 0 CHG=-1 | |||
M V30 89 F 3.40353 0.16875 0.0 0 | |||
M V30 90 F 1.67147 0.16875 0.0 0 | |||
M V30 91 F 2.5375 -1.33125 0.0 0 | |||
M V30 92 F 1.67147 -0.83125 0.0 0 | |||
M V30 93 F 2.5375 0.66875 0.0 0 | |||
M V30 94 F 3.40353 -0.83125 0.0 0 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 1 5 | |||
M V30 2 2 2 3 | |||
M V30 3 1 3 1 | |||
M V30 4 1 4 2 | |||
M V30 5 1 5 4 | |||
M V30 6 1 6 10 | |||
M V30 7 1 7 8 | |||
M V30 8 1 8 6 | |||
M V30 9 1 9 7 | |||
M V30 10 2 10 9 | |||
M V30 11 1 11 15 | |||
M V30 12 1 12 13 | |||
M V30 13 2 13 11 | |||
M V30 14 2 14 12 | |||
M V30 15 1 15 14 | |||
M V30 16 1 16 20 | |||
M V30 17 1 17 18 | |||
M V30 18 2 18 16 | |||
M V30 19 2 19 17 | |||
M V30 20 1 20 19 | |||
M V30 21 1 1 21 | |||
M V30 22 2 21 6 | |||
M V30 23 2 4 22 | |||
M V30 24 1 22 11 | |||
M V30 25 1 14 23 | |||
M V30 26 2 23 20 | |||
M V30 27 1 17 24 | |||
M V30 28 2 24 7 | |||
M V30 29 1 21 25 | |||
M V30 30 1 22 26 | |||
M V30 31 1 23 27 | |||
M V30 32 1 24 28 | |||
M V30 33 2 30 28 | |||
M V30 34 2 31 29 | |||
M V30 35 1 28 32 | |||
M V30 36 1 29 30 | |||
M V30 37 2 32 33 | |||
M V30 38 1 33 31 | |||
M V30 39 2 35 27 | |||
M V30 40 2 36 34 | |||
M V30 41 1 27 37 | |||
M V30 42 1 34 35 | |||
M V30 43 2 37 38 | |||
M V30 44 1 38 36 | |||
M V30 45 2 40 26 | |||
M V30 46 2 41 39 | |||
M V30 47 1 26 42 | |||
M V30 48 1 39 40 | |||
M V30 49 2 42 43 | |||
M V30 50 1 43 41 | |||
M V30 51 2 45 25 | |||
M V30 52 2 46 44 | |||
M V30 53 1 25 47 | |||
M V30 54 1 44 45 | |||
M V30 55 2 47 48 | |||
M V30 56 1 48 46 | |||
M V30 57 1 46 49 | |||
M V30 58 1 41 50 | |||
M V30 59 1 36 51 | |||
M V30 60 1 31 52 | |||
M V30 61 1 49 53 | |||
M V30 62 1 49 54 | |||
M V30 63 1 49 55 | |||
M V30 64 1 50 56 | |||
M V30 65 1 50 57 | |||
M V30 66 1 50 58 | |||
M V30 67 1 51 59 | |||
M V30 68 1 51 60 | |||
M V30 69 1 51 61 | |||
M V30 70 1 52 62 | |||
M V30 71 1 52 63 | |||
M V30 72 1 52 64 | |||
M V30 73 8 5 65 | |||
M V30 74 8 8 65 | |||
M V30 75 8 15 65 | |||
M V30 76 8 19 65 | |||
M V30 77 10 65 66 | |||
M V30 78 1 67 68 | |||
M V30 79 1 67 69 | |||
M V30 80 1 67 70 | |||
M V30 81 1 67 71 | |||
M V30 82 1 67 72 | |||
M V30 83 1 67 73 | |||
M V30 84 1 74 75 | |||
M V30 85 1 74 76 | |||
M V30 86 1 74 77 | |||
M V30 87 1 74 78 | |||
M V30 88 1 74 79 | |||
M V30 89 1 74 80 | |||
M V30 90 1 81 82 | |||
M V30 91 1 81 83 | |||
M V30 92 1 81 84 | |||
M V30 93 1 81 85 | |||
M V30 94 1 81 86 | |||
M V30 95 1 81 87 | |||
M V30 96 1 88 89 | |||
M V30 97 1 88 90 | |||
M V30 98 1 88 91 | |||
M V30 99 1 88 92 | |||
M V30 100 1 88 93 | |||
M V30 101 1 88 94 | |||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
</chemform> | |||
====Photosensitizer==== | ====Photosensitizer==== | ||
Line 11: | Line 228: | ||
====Investigation==== | ====Investigation==== | ||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}} | {{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}} | ||
====Sacrificial Electron Donor ==== | |||
==== | In this study, the experiments were done with the sacrificial electron donor BIH ({{#moleculelink:|link=VDFIVJSRRJXMAU-UHFFFAOYSA-N|image=false|width=300|height=200}}). | ||
==== Additives==== | |||
In this study, {{#moleculelink:|link=RHQDFWAXVIIEBN-UHFFFAOYSA-N|image=false|width=300|height=200}} was used as an additive.[[Category:Publication]] |
Latest revision as of 10:37, 11 April 2024
Abstract[edit | edit source]
Summary[edit | edit source]
A photochemical reduction of CO2 to CO was shown using the iron porphyrin complex [Fe(pTMAPP)Cl][PF6]4 as catalyst, screening the effect of different phenoxazine-based photosensitizers on the CO production. Turnover numbers (TONs) of 115 and a selectivity of 100% for CO were reached in acetonitrile in combination with the photosensitizer 100762. The experiments were conducted under visible-light irradiation (λ > 400 nm) using BIH as sacrificial electron donor (see section SEDs below).
Advances and special progress[edit | edit source]
In this study, the authors showed a strong relation between the oxidation potential of the photosensitizer and the CO production whereas no correlation between the CO production and the excited state potential of the photosensitizer was discovered. This identifies the electron transfer to regenerate the photosensitizer as a determining step and demonstrates the importance of improving the interaction between the photosensitizer and the sacrificial electron donor for optimization of the CO2 reduction.
Additional remarks[edit | edit source]
The tested phenoxazine-based photosensitizers performed similarly in combination with the iron porphyrin complex and allowed for TONs of 88-115 and selectivities of 80-100% apart from complex 4-[7-[4-(diphenylamino)phenyl]-10-naphthalen-2-yl-phenoxazin-3-yl]-N,N-diphenyl-aniline that showed both a lower TON (32) and decreased selectivity (36%).
Content of the published article in detail[edit | edit source]
The article contains results for the reduction of CO2 to CO under visible-light catalysis using an iron complex and different phenoxazine-based photosensitizers. The catalytic system performs best (referring to the TON of CO production) in acetonitrile.
Catalyst[edit | edit source]
Photosensitizer[edit | edit source]
3,7-Di((1,1'-biphenyl)-4-yl)-10-(naphthalen-1-yl)-10H-phenoxazine 1007611007621007634-[7-[4-(diphenylamino)phenyl]-10-naphthalen-2-yl-phenoxazin-3-yl]-N,N-diphenyl-aniline10-naphthalen-2-yl-3,7-di(pyren-1-yl)phenoxazine
Investigation[edit | edit source]
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | additives | . | λexc [nm] | . | TON CO | TON H2 | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.002 | 0.2 | 0.005 | TFE | > 400 | 103 | 25 | |||||||
2. | 0.002 | 0.2 | 0.005 | TFE | > 400 | 88 | 12 | |||||||
3. | 0.002 | 0.2 | 0.005 | TFE | > 400 | 115 | ||||||||
4. | 0.002 | 0.2 | 0.005 | TFE | > 400 | 112 | 12 | |||||||
5. | 0.002 | 0.2 | 0.005 | TFE | > 400 | 32 | 57 | |||||||
6. | 0.002 | 0.2 | 0.005 | TFE | > 400 | 89 |
Sacrificial Electron Donor[edit | edit source]
In this study, the experiments were done with the sacrificial electron donor BIH (BIH).
Additives[edit | edit source]
In this study, TFE was used as an additive.
Investigations
- Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)