Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes: Difference between revisions
About |
---|
(new paper, cat and PS) |
(added molecule link) |
||
(19 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{DOI|doi=10.1021/jacs.6b06002}} | ||
[[Category:Photocatalytic CO2 conversion to CO]] | [[Category:Photocatalytic CO2 conversion to CO]] | ||
{{BaseTemplate}} | {{BaseTemplate}} | ||
==== | ===Abstract=== | ||
====Summary==== | |||
A photochemical reduction of CO<sub>2</sub> to CO was shown using the cobalt complex {{#moleculelink:|link=NLKWUAXOGCKGEY-UHFFFAOYSA-L|image=false|width=300|height=200}} or the iron complex {{#moleculelink:|link=OZQYFMFOIFRRLI-UHFFFAOYSA-L|image=false|width=300|height=200}} as catalysts in combination with the ruthenium-based photosensitizer {{#moleculelink:|link=SJFYGUKHUNLZTK-UHFFFAOYSA-L|image=false|width=300|height=200}}. Turnover numbers (TONs) up to 2660 and a selectivity of 98% for CO using the cobalt catalyst and TONs of >3000 and a selectivity of 95% for CO using the iron catalyst were reached in acetonitrile/triethanolamine. When swapping the ruthenium photosensitizer for the organic dye sensitizer {{#moleculelink:|link=BBNQQADTFFCFGB-UHFFFAOYSA-N|image=false|width=300|height=200}}, TONs of 790 and 1365 in DMF were obtained for the cobalt and iron catalysts, respectively. The experiments were conducted under visible-light irradiation (λ = 460 nm) using BIH as sacrificial reductant (see section SEDs below). | |||
==== Advances and special progress==== | |||
The photocatalytic reduction of CO<sub>2</sub> to CO by cobalt and iron complexes was shown with some of the highest TONs for homogeneous photocatalytic CO<sub>2</sub> reduction at that time and the (back then) highest TON for a system of fully earth-abundant materials was achieved. | |||
====Additional remarks==== | |||
===Content of the published article in detail=== | |||
The article contains results for the reduction of CO<sub>2</sub> to CO under visible-light catalysis using cobalt and iron quaterpyridine complexes as catalysts. The catalytic system performs best (referring to the TON of CO production) in acetonitrile/triethanolamine using the cobalt complex {{#moleculelink:|link=OZQYFMFOIFRRLI-UHFFFAOYSA-L|image=false|width=300|height=200}} and the ruthenium photosensitizer. | |||
==== Catalysts ==== | |||
<chemform smiles="C1C2C3C=CC=C4C5C=CC=C6C7C=CC=CN=7[Fe+2](O)(O)(N=34)(N=56)N=2C=CC=1.Cl([O-])(=O)(=O)=O.Cl([O-])(=O)(=O)=O" inchi="1S/C20H14N4.2ClHO4.Fe.2H2O/c1-3-13-21-15(7-1)17-9-5-11-19(23-17)20-12-6-10-18(24-20)16-8-2-4-14-22-16;2*2-1(3,4)5;;;/h1-14H;2*(H,2,3,4,5);;2*1H2/q;;;+2;;/p-2" inchikey="NLKWUAXOGCKGEY-UHFFFAOYSA-L" height="200px" width="300px" float="none"> | <chemform smiles="C1C2C3C=CC=C4C5C=CC=C6C7C=CC=CN=7[Fe+2](O)(O)(N=34)(N=56)N=2C=CC=1.Cl([O-])(=O)(=O)=O.Cl([O-])(=O)(=O)=O" inchi="1S/C20H14N4.2ClHO4.Fe.2H2O/c1-3-13-21-15(7-1)17-9-5-11-19(23-17)20-12-6-10-18(24-20)16-8-2-4-14-22-16;2*2-1(3,4)5;;;/h1-14H;2*(H,2,3,4,5);;2*1H2/q;;;+2;;/p-2" inchikey="NLKWUAXOGCKGEY-UHFFFAOYSA-L" height="200px" width="300px" float="none"> | ||
-INDIGO- | -INDIGO-08112312532D | ||
0 0 0 0 0 0 0 0 0 0 0 V3000 | 0 0 0 0 0 0 0 0 0 0 0 V3000 | ||
Line 91: | Line 100: | ||
M V30 40 2 33 36 | M V30 40 2 33 36 | ||
M V30 41 1 33 37 | M V30 41 1 33 37 | ||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
</chemform><chemform smiles="C1C2C3C=CC=C4C5C=CC=C6C7C=CC=CN=7[Co+2](O)(O)(N=34)(N=56)N=2C=CC=1.Cl([O-])(=O)(=O)=O.Cl([O-])(=O)(=O)=O" inchi="1S/C20H14N4.2ClHO4.Co.2H2O/c1-3-13-21-15(7-1)17-9-5-11-19(23-17)20-12-6-10-18(24-20)16-8-2-4-14-22-16;2*2-1(3,4)5;;;/h1-14H;2*(H,2,3,4,5);;2*1H2/q;;;+2;;/p-2" inchikey="OZQYFMFOIFRRLI-UHFFFAOYSA-L" height="200px" width="300px" float="none"> | |||
-INDIGO-08112312532D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 37 41 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 C 7.93029 25.0727 0.0 0 | |||
M V30 2 C 9.46221 25.0731 0.0 0 | |||
M V30 3 C 8.6977 25.5155 0.0 0 | |||
M V30 4 C 9.46221 24.187 0.0 0 | |||
M V30 5 C 7.93029 24.183 0.0 0 | |||
M V30 6 N 8.69963 23.7447 0.0 0 | |||
M V30 7 C 7.16484 23.7381 0.0 0 | |||
M V30 8 C 6.40399 22.4085 0.0 0 | |||
M V30 9 N 7.16775 22.8521 0.0 0 | |||
M V30 10 C 5.63495 22.8488 0.0 0 | |||
M V30 11 C 6.39273 24.1802 0.0 0 | |||
M V30 12 C 5.63011 23.7303 0.0 0 | |||
M V30 13 C 6.40673 21.5231 0.0 0 | |||
M V30 14 C 7.17806 20.1996 0.0 0 | |||
M V30 15 N 7.17556 21.0828 0.0 0 | |||
M V30 16 C 6.41228 19.7536 0.0 0 | |||
M V30 17 C 5.63789 21.0754 0.0 0 | |||
M V30 18 C 5.64635 20.19 0.0 0 | |||
M V30 19 C 7.94625 19.7594 0.0 0 | |||
M V30 20 C 9.47817 19.7659 0.0 0 | |||
M V30 21 N 8.7119 20.2052 0.0 0 | |||
M V30 22 C 9.48169 18.8798 0.0 0 | |||
M V30 23 C 7.94979 18.8697 0.0 0 | |||
M V30 24 C 8.72087 18.4345 0.0 0 | |||
M V30 25 Co 8.72177 22.0183 0.0 0 CHG=2 | |||
M V30 26 O 9.88692 22.7708 0.0 0 | |||
M V30 27 O 9.95332 21.2657 0.0 0 | |||
M V30 28 Cl 12.3262 23.9218 0.0 0 | |||
M V30 29 O 11.4408 23.9218 0.0 0 | |||
M V30 30 O 12.334 24.7992 0.0 0 | |||
M V30 31 O 13.2699 23.914 0.0 0 | |||
M V30 32 O 12.3262 23.0365 0.0 0 CHG=-1 | |||
M V30 33 Cl 12.397 21.0264 0.0 0 | |||
M V30 34 O 11.4965 21.0264 0.0 0 | |||
M V30 35 O 12.405 21.9188 0.0 0 | |||
M V30 36 O 13.2665 21.0181 0.0 0 | |||
M V30 37 O 12.397 20.1258 0.0 0 CHG=-1 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 3 1 | |||
M V30 2 2 4 2 | |||
M V30 3 1 1 5 | |||
M V30 4 1 2 3 | |||
M V30 5 2 5 6 | |||
M V30 6 1 6 4 | |||
M V30 7 1 5 7 | |||
M V30 8 2 9 7 | |||
M V30 9 2 10 8 | |||
M V30 10 1 7 11 | |||
M V30 11 1 8 9 | |||
M V30 12 2 11 12 | |||
M V30 13 1 12 10 | |||
M V30 14 1 8 13 | |||
M V30 15 2 15 13 | |||
M V30 16 2 16 14 | |||
M V30 17 1 13 17 | |||
M V30 18 1 14 15 | |||
M V30 19 2 17 18 | |||
M V30 20 1 18 16 | |||
M V30 21 1 14 19 | |||
M V30 22 2 21 19 | |||
M V30 23 2 22 20 | |||
M V30 24 1 19 23 | |||
M V30 25 1 20 21 | |||
M V30 26 2 23 24 | |||
M V30 27 1 24 22 | |||
M V30 28 10 6 25 | |||
M V30 29 10 25 21 | |||
M V30 30 10 15 25 | |||
M V30 31 10 25 9 | |||
M V30 32 10 25 26 | |||
M V30 33 10 25 27 | |||
M V30 34 2 28 29 | |||
M V30 35 2 28 30 | |||
M V30 36 2 28 31 | |||
M V30 37 1 28 32 | |||
M V30 38 2 33 34 | |||
M V30 39 2 33 35 | |||
M V30 40 2 33 36 | |||
M V30 41 1 33 37 | |||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
</chemform><chemform smiles="Cl([O-])(=O)(=O)=O.Cl([O-])(=O)(=O)=O.[Co+2]" inchi="1S/2ClHO4.Co/c2*2-1(3,4)5;/h2*(H,2,3,4,5);/q;;+2/p-2" inchikey="BSUSEPIPTZNHMN-UHFFFAOYSA-L" height="200px" width="300px" float="none"> | |||
-INDIGO-08112313202D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 11 8 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 Cl 5.85991 -4.47939 0.0 0 | |||
M V30 2 O 5.02832 -4.47939 0.0 0 | |||
M V30 3 O 5.86723 -3.65532 0.0 0 | |||
M V30 4 O 6.74625 -4.48672 0.0 0 | |||
M V30 5 O 5.85991 -5.31088 0.0 0 CHG=-1 | |||
M V30 6 Cl 10.3764 -4.54882 0.0 0 | |||
M V30 7 O 9.53063 -4.54882 0.0 0 | |||
M V30 8 O 10.3839 -3.71065 0.0 0 | |||
M V30 9 O 11.1931 -4.55661 0.0 0 | |||
M V30 10 O 10.3764 -5.39468 0.0 0 CHG=-1 | |||
M V30 11 Co 7.8 -4.45 0.0 0 CHG=2 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 1 2 | |||
M V30 2 2 1 3 | |||
M V30 3 2 1 4 | |||
M V30 4 1 1 5 | |||
M V30 5 2 6 7 | |||
M V30 6 2 6 8 | |||
M V30 7 2 6 9 | |||
M V30 8 1 6 10 | |||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | M V30 END CTAB | ||
Line 96: | Line 226: | ||
</chemform> | </chemform> | ||
==== | ==== Photosensitizers ==== | ||
<chemform smiles="C1C2C3C=CC=CN=3[Ru+2]3(N4C=CC=CC=4C4N3=CC=CC=4)3(N4C=CC=CC=4C4N3=CC=CC=4)N=2C=CC=1.[Cl-].[Cl-]" inchi="1S/3C10H8N2.2ClH.Ru/c3*1-3-7-11-9(5-1)10-6-2-4-8-12-10;;;/h3*1-8H;2*1H;/q;;;;;+2/p-2" inchikey="SJFYGUKHUNLZTK-UHFFFAOYSA-L" height="200px" width="300px" float="none"> | <chemform smiles="C1C2C3C=CC=CN=3[Ru+2]3(N4C=CC=CC=4C4N3=CC=CC=4)3(N4C=CC=CC=4C4N3=CC=CC=4)N=2C=CC=1.[Cl-].[Cl-]" inchi="1S/3C10H8N2.2ClH.Ru/c3*1-3-7-11-9(5-1)10-6-2-4-8-12-10;;;/h3*1-8H;2*1H;/q;;;;;+2/p-2" inchikey="SJFYGUKHUNLZTK-UHFFFAOYSA-L" height="200px" width="300px" float="none"> | ||
-INDIGO-08112312492D | -INDIGO-08112312492D | ||
Line 190: | Line 320: | ||
M V30 44 10 27 37 | M V30 44 10 27 37 | ||
M V30 45 10 37 33 | M V30 45 10 37 33 | ||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
</chemform><chemform smiles="C1C=CC2C(=O)C3C(O)=CC(O)=C(O)C=3C(=O)C=2C=1" inchi="1S/C14H8O5/c15-8-5-9(16)14(19)11-10(8)12(17)6-3-1-2-4-7(6)13(11)18/h1-5,15-16,19H" inchikey="BBNQQADTFFCFGB-UHFFFAOYSA-N" height="200px" width="300px" float="none"> | |||
-INDIGO-08112312542D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 19 21 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 C 5.30985 -5.42507 0.0 0 | |||
M V30 2 C 7.04015 -5.42459 0.0 0 | |||
M V30 3 C 6.17664 -4.92497 0.0 0 | |||
M V30 4 C 7.04015 -6.42553 0.0 0 | |||
M V30 5 C 5.30985 -6.43002 0.0 0 | |||
M V30 6 C 6.17882 -6.92503 0.0 0 | |||
M V30 7 C 7.90465 -4.92621 0.0 0 | |||
M V30 8 C 8.77183 -5.42655 0.0 0 | |||
M V30 9 C 7.9108 -6.92787 0.0 0 | |||
M V30 10 C 8.77403 -6.42246 0.0 0 | |||
M V30 11 C 9.63088 -4.92878 0.0 0 | |||
M V30 12 C 10.4948 -5.42469 0.0 0 | |||
M V30 13 C 9.64141 -6.92035 0.0 0 | |||
M V30 14 C 10.4992 -6.41559 0.0 0 | |||
M V30 15 O 7.90482 -3.92621 0.0 0 | |||
M V30 16 O 7.91399 -7.92786 0.0 0 | |||
M V30 17 O 9.62885 -3.92878 0.0 0 | |||
M V30 18 O 11.3591 -4.92169 0.0 0 | |||
M V30 19 O 9.64681 -7.92034 0.0 0 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 3 1 | |||
M V30 2 2 4 2 | |||
M V30 3 1 1 5 | |||
M V30 4 1 2 3 | |||
M V30 5 2 5 6 | |||
M V30 6 1 6 4 | |||
M V30 7 1 8 7 | |||
M V30 8 1 4 9 | |||
M V30 9 1 7 2 | |||
M V30 10 1 9 10 | |||
M V30 11 2 10 8 | |||
M V30 12 2 12 11 | |||
M V30 13 1 10 13 | |||
M V30 14 1 11 8 | |||
M V30 15 2 13 14 | |||
M V30 16 1 14 12 | |||
M V30 17 2 7 15 | |||
M V30 18 2 9 16 | |||
M V30 19 1 11 17 | |||
M V30 20 1 12 18 | |||
M V30 21 1 13 19 | |||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
</chemform> | </chemform> | ||
==== Investigations ==== | |||
{{#experimentlist: |form=Photocatalytic_CO2_conversion_experiments|name=Optimizations of conditions for Co(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2}} | |||
{{#experimentlist: |form=Photocatalytic_CO2_conversion_experiments|name=Optimizations of conditions for Fe(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2}} | |||
{{#experimentlist: |form=Photocatalytic_CO2_conversion_experiments|name=Optimizations of conditions for Co(qpy)(H2O)2(ClO4)2 and purpurin}} | |||
{{#experimentlist: |form=Photocatalytic_CO2_conversion_experiments|name=Optimizations of conditions for Fe(qpy)(H2O)2(ClO4)2}} | |||
==== Sacrificial electron donor ==== | |||
In this study, the experiments were done with the sacrificial reductant BIH ([[Molecule:100508|100508]]). | |||
==== Additives==== | |||
In this study, control experiments were conducted under an argon atmosphere.[[Category:Publication]] |
Latest revision as of 09:55, 22 May 2024
Abstract[edit | edit source]
Summary[edit | edit source]
A photochemical reduction of CO2 to CO was shown using the cobalt complex [Fe(qpy)(H2O)2][ClO4]2 or the iron complex [Co(qpy)(H2O)2][ClO4]2 as catalysts in combination with the ruthenium-based photosensitizer Ru(bpy)3Cl2. Turnover numbers (TONs) up to 2660 and a selectivity of 98% for CO using the cobalt catalyst and TONs of >3000 and a selectivity of 95% for CO using the iron catalyst were reached in acetonitrile/triethanolamine. When swapping the ruthenium photosensitizer for the organic dye sensitizer purpurin, TONs of 790 and 1365 in DMF were obtained for the cobalt and iron catalysts, respectively. The experiments were conducted under visible-light irradiation (λ = 460 nm) using BIH as sacrificial reductant (see section SEDs below).
Advances and special progress[edit | edit source]
The photocatalytic reduction of CO2 to CO by cobalt and iron complexes was shown with some of the highest TONs for homogeneous photocatalytic CO2 reduction at that time and the (back then) highest TON for a system of fully earth-abundant materials was achieved.
Additional remarks[edit | edit source]
Content of the published article in detail[edit | edit source]
The article contains results for the reduction of CO2 to CO under visible-light catalysis using cobalt and iron quaterpyridine complexes as catalysts. The catalytic system performs best (referring to the TON of CO production) in acetonitrile/triethanolamine using the cobalt complex [Co(qpy)(H2O)2][ClO4]2 and the ruthenium photosensitizer.
Catalysts[edit | edit source]
[Fe(qpy)(H2O)2][ClO4]2 [Co(qpy)(H2O)2][ClO4]2 Co(ClO4)2
Photosensitizers[edit | edit source]
Investigations[edit | edit source]
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | . | . | solvent A | additives | λexc [nm] | . | TON CO | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.005 | 0.3 | 0.1 | 460 (LED) | 2660 | 23 | 35 | |||||||||
2. | 0 | 0.3 | 0.1 | 460 (LED) | 0 | 2 | 1 | |||||||||
3. | 0.005 | 0.3 | 0.1 | Argon atmosphere | 460 (LED) | 0 | 33 | 0 | ||||||||
4. | 0.005 | 0.3 | 0.1 | 460 (LED) | 182 | 0 | 11 | |||||||||
5. | 0.005 | 0.3 | 460 (LED) | 114 | 25 | 25 | ||||||||||
6. | 0.01 | 0.3 | 0.1 | 460 (LED) | 1875 | 11 | 18 | |||||||||
7. | 0.2 | 0.3 | 0.1 | 460 (LED) | 1262 | 7 | 23 | |||||||||
8. | 0.05 | 0.3 | 0.1 | 460 (LED) | 497 | 5 | 3 | |||||||||
9. | 0.05 | 0.3 | 460 (LED) | 0 | 1 | 1 | ||||||||||
10. | 0.1 | 0.3 | 0.1 | 460 (LED) | 466 | 2 | 22 | |||||||||
11. | 0.05 | 0.5 | 0.1 | 460 (LED) | 521 | 49 | 6 | |||||||||
12. | 0 | 0.5 | 0.1 | 460 (LED) | 136 | 43 | 5 | |||||||||
13. | 0.05 | 0.2 | 0.1 | 460 (LED) | 366 | 15 | 4 | |||||||||
14. | 0.05 | 0.2 | 0.1 | Argon atmosphere | 460 (LED) | 0 | 3 | 1 | ||||||||
15. | 0 | 0.2 | 0.1 | 460 (LED) | 0 | 6 | 1 | |||||||||
16. | 0.05 | 0.3 | 0.1 | 460 (LED) | 33 | 11 | 1 | |||||||||
17. | 0.05 | 0.3 | 460 (LED) | 0 | 1 | 1 |
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | . | . | additives | λexc [nm] | . | TON CO | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.05 | 0.2 | 0.1 | 460 (LED) | 1879 | 15 | 48 | |||||||||
2. | 0.05 | 0.2 | 0.1 | Argon atmosphere | 460 (LED) | 0 | 1 | 3 | ||||||||
3. | 0 | 0.2 | 0.1 | 460 (LED) | 0 | 0 | 0 | |||||||||
4. | 0.02 | 0.2 | 0.1 | 460 (LED) | 2660 | 29 | 51 | |||||||||
5. | 0.02 | 0.2 | 0.1 | Argon atmosphere | 460 (LED) | 0 | 0 | 0 | ||||||||
6. | 0.01 | 0.2 | 0.1 | 460 (LED) | 3087 | 121 | 35 | |||||||||
7. | 0.01 | 0.2 | 0.1 | Argon atmosphere | 460 (LED) | 0 | 0 | 0 | ||||||||
8. | 0.005 | 0.2 | 0.1 | 460 (LED) | 3844 | 118 | 534 | |||||||||
9. | 0.005 | 0.2 | 0.1 | Argon atmosphere | 460 (LED) | 0 | 1 | 0 | ||||||||
10. | 0.05 | 0.05 | 0.1 | 460 (LED) | 1336 | 10 | 34 | |||||||||
11. | 0.05 | 0.05 | 0.1 | 460 (LED) | 0 | 0 | 0 | |||||||||
12. | 0 | 0.05 | 0.1 | 460 (LED) | 0 | 1 | 0 | |||||||||
13. | 0.005 | 0.2 | 460 (LED) | 160 | 8 | 22 |
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | additives | λexc [nm] | . | TON CO | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.05 | 2 | 0.1 | 460 (LED) | 197 | 1 | 9 | |||||||
2. | 0.05 | 2 | 0.1 | Argon atmosphere | 460 (LED) | 0 | 78 | 6 | ||||||
3. | 0 | 2 | 0.1 | 460 (LED) | 0 | 0 | 90 | |||||||
4. | 0.05 | 0 | 0.1 | 460 (LED) | 27 | 0 | 4 | |||||||
5. | 0.05 | 2 | 460 (LED) | 0 | 0 | 3 | ||||||||
6. | 0.005 | 2 | 0.1 | 460 (LED) | 790 | 11 | 78 | |||||||
7. | 0.005 | 2 | 0.1 | Argon atmosphere | 460 (LED) | 0 | 226 | 167 | ||||||
8. | 0.005 | 2 | Argon atmosphere | 460 (LED) | 0 | 0 | 26 | |||||||
9. | 0.05 | 2 | 0.1 | 460 (LED) | 0 | 0 | 3 |
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | additives | λexc [nm] | . | TON CO | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.05 | 0.02 | 0.1 | 460 (LED) | 520 | 0 | 14 | |||||||
2. | 0.05 | 0.02 | 0.1 | Argon atmosphere | 460 (LED) | 0 | 3 | 21 | ||||||
3. | 0 | 0.02 | 0.1 | 460 (LED) | 0 | 139 | 0 | |||||||
4. | 0.05 | 0.05 | 0.1 | 460 (LED) | 520 | 0 | 21 | |||||||
5. | 0.05 | 0.05 | 0.1 | Argon atmosphere | 460 (LED) | 0 | 0 | 8 | ||||||
6. | 0 | 0.05 | 0.1 | 460 (LED) | 0 | 0 | 10 | |||||||
7. | 0.05 | 0.2 | 0.1 | 460 (LED) | 350 | 1 | 23 | |||||||
8. | 0.05 | 0.2 | 0.1 | Argon atmosphere | 460 (LED) | 0 | 54 | 20 | ||||||
9. | 0.05 | 0 | 0.1 | 460 (LED) | 0 | 0 | 24 | |||||||
10. | 0.05 | 0.02 | 0.1 | 460 (LED) | 0 | 0 | 8 | |||||||
11. | 0.005 | 0.02 | 0.1 | 460 (LED) | 1365 | 0 | 115 | |||||||
12. | 0.005 | 0.02 | 0.1 | Argon atmosphere | 460 (LED) | 0 | 52 | 88 |
Sacrificial electron donor[edit | edit source]
In this study, the experiments were done with the sacrificial reductant BIH (100508).
Additives[edit | edit source]
In this study, control experiments were conducted under an argon atmosphere.
Investigations
- Optimizations of conditions for Co(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2 (Molecular process, Photocatalytic CO2 conversion experiments)
- Optimizations of conditions for Co(qpy)(H2O)2(ClO4)2 and purpurin (Molecular process, Photocatalytic CO2 conversion experiments)
- Optimizations of conditions for Fe(qpy)(H2O)2(ClO4)2 (Molecular process, Photocatalytic CO2 conversion experiments)
- Optimizations of conditions for Fe(qpy)(H2O)2(ClO4)2 and Ru(bpy)3Cl2 (Molecular process, Photocatalytic CO2 conversion experiments)