Visible light driven reduction of CO2 catalyzed by an abundant manganese catalyst with zinc porphyrin photosensitizer: Difference between revisions
About |
---|
(Added molecules) |
m (added Publication category) |
||
(13 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{DOI|doi=10.1016/j.apcata.2016.04.035}} | ||
[[Category:Photocatalytic CO2 conversion to CO]] | [[Category:Photocatalytic CO2 conversion to CO]] | ||
[[Category:Photocatalytic CO2 conversion to HCOOH]] | [[Category:Photocatalytic CO2 conversion to HCOOH]] | ||
{{BaseTemplate}} | {{BaseTemplate}} | ||
=== | === Abstract === | ||
==== Catalyst ==== | ==== Summary ==== | ||
A photochemical reduction of CO<sub>2</sub> was shown using the manganese catalyst {{#moleculelink:|link=ZUZWBGQHMPVNDY-UHFFFAOYSA-M|image=false|width=300|height=200}} and the zinc photosensitizer {{#moleculelink:|link=XPVVGUHKLPZAEN-DAJBKUBHSA-N|image=false|width=300|height=200}}. Turnover numbers (TONs) of 64 and 16 were reached after 180 min of irradiation for CO and formic acid, respectively. The experiments were performed using a Xenon lamp as the light source. | |||
==== Advances and special progress ==== | |||
Photochemical CO<sub>2</sub> conversion in an environmentally friendly and sustainable photocatalytic system using earth abundant metal complexes efficiently yielded CO and HCOOH in aqueous acetonitrile solution. | |||
==== Additional remarks ==== | |||
The manganese catalyst and the zinc photosensitizer were used in different ratios, resulting in different TONs for CO and HCOOH production. | |||
=== Content of the published article in detail === | |||
The article contains results for the reduction of CO<sub>2</sub> to CO and HCOOH using different ratios of the catalyst and photosensitizer. The catalytic system performed best (referring to the TONs of CO and HCOOH production) for the catalyst:photosensitizer ratio of 4:1. | |||
==== Catalyst==== | |||
<chemform smiles="C1C=C2C3C=CC=CN=3[Mn+]([Br-])([C-]#[O+])([C-]#[O+])([C-]#[O+])N2=CC=1" inchi="1S/C10H8N2.3CO.BrH.Mn/c1-3-7-11-9(5-1)10-6-2-4-8-12-10;3*1-2;;/h1-8H;;;;1H;/q;;;;;+1/p-1" inchikey="ZUZWBGQHMPVNDY-UHFFFAOYSA-M" height="200px" width="300px" float="none"> | <chemform smiles="C1C=C2C3C=CC=CN=3[Mn+]([Br-])([C-]#[O+])([C-]#[O+])([C-]#[O+])N2=CC=1" inchi="1S/C10H8N2.3CO.BrH.Mn/c1-3-7-11-9(5-1)10-6-2-4-8-12-10;3*1-2;;/h1-8H;;;;1H;/q;;;;;+1/p-1" inchikey="ZUZWBGQHMPVNDY-UHFFFAOYSA-M" height="200px" width="300px" float="none"> | ||
-INDIGO-05172311492D | -INDIGO-05172311492D | ||
Line 63: | Line 75: | ||
</chemform> | </chemform> | ||
==== Photosensitizer ==== | ====Photosensitizer ==== | ||
<chemform smiles="C1= | <chemform smiles="C1=C2/C(/C3C=CC=CC=3)=C3\N=C(/C(/C4C=CC=CC=4)=C4\[N-]/C(=C(/C5C=CC=CC=5)\C5=N/C(=C(/C6C=CC=CC=6)\C(=C1)[N-]2)/C=C5)/C=C\4)C=C\3.[Zn+2]" inchikey="XPVVGUHKLPZAEN-DAJBKUBHSA-N" inchi="1S/C44H28N4.Zn/c1-5-13-29(14-6-1)41-33-21-23-35(45-33)42(30-15-7-2-8-16-30)37-25-27-39(47-37)44(32-19-11-4-12-20-32)40-28-26-38(48-40)43(31-17-9-3-10-18-31)36-24-22-34(41)46-36;/h1-28H;/q-2;+2/b41-33-,41-34-,42-35-,42-37-,43-36-,43-38-,44-39-,44-40-;" float="none" width="200" height="200"> | ||
-INDIGO- | -INDIGO-11302313082D | ||
0 0 0 0 0 0 0 0 0 0 0 V3000 | 0 0 0 0 0 0 0 0 0 0 0 V3000 | ||
M V30 BEGIN CTAB | M V30 BEGIN CTAB | ||
M V30 COUNTS 49 | M V30 COUNTS 49 56 0 0 0 | ||
M V30 BEGIN ATOM | M V30 BEGIN ATOM | ||
M V30 1 C | M V30 1 C 4.26444 -2.19264 0.0 0 | ||
M V30 2 N | M V30 2 N 4.95066 -3.60797 0.0 0 CHG=-1 | ||
M V30 3 C | M V30 3 C 5.13521 -2.6936 0.0 0 | ||
M V30 4 C | M V30 4 C 3.97264 -3.70955 0.0 0 | ||
M V30 5 C | M V30 5 C 3.534 -2.85356 0.0 0 | ||
M V30 6 C | M V30 6 C 8.00662 -2.02009 0.0 0 | ||
M V30 7 C 8. | M V30 7 C 8.51658 -3.52705 0.0 0 | ||
M V30 8 C | M V30 8 C 8.82814 -2.59525 0.0 0 | ||
M V30 9 | M V30 9 N 7.4976 -3.55292 0.0 0 | ||
M V30 10 C | M V30 10 C 7.19098 -2.61274 0.0 0 | ||
M V30 11 N | M V30 11 N 5.15903 -5.24596 0.0 0 | ||
M V30 12 C 4. | M V30 12 C 4.67909 -6.74346 0.0 0 | ||
M V30 13 C 5. | M V30 13 C 5.47557 -6.15555 0.0 0 | ||
M V30 14 C | M V30 14 C 3.86667 -6.18575 0.0 0 | ||
M V30 15 | M V30 15 C 4.14196 -5.291 0.0 0 | ||
M V30 16 | M V30 16 N 7.74715 -5.30724 0.0 0 CHG=-1 | ||
M V30 17 C | M V30 17 C 9.09989 -6.11388 0.0 0 | ||
M V30 18 C | M V30 18 C 8.67727 -5.20374 0.0 0 | ||
M V30 19 C 8. | M V30 19 C 8.35684 -6.73786 0.0 0 | ||
M V30 20 C | M V30 20 C 7.47905 -6.1624 0.0 0 | ||
M V30 21 | M V30 21 C 3.54011 -4.53811 0.0 0 | ||
M V30 22 C | M V30 22 C 6.51552 -6.63012 0.0 0 | ||
M V30 23 C | M V30 23 C 9.15199 -4.36492 0.0 0 | ||
M V30 24 C | M V30 24 C 6.13275 -2.19316 0.0 0 | ||
M V30 25 C | M V30 25 C 6.51552 -7.63012 0.0 0 | ||
M V30 26 C 7. | M V30 26 C 7.38209 -9.12778 0.0 0 | ||
M V30 27 C 7. | M V30 27 C 7.38235 -8.13015 0.0 0 | ||
M V30 28 C | M V30 28 C 6.51559 -9.62883 0.0 0 | ||
M V30 29 C | M V30 29 C 5.64555 -8.13318 0.0 0 | ||
M V30 30 C | M V30 30 C 5.65201 -9.13323 0.0 0 | ||
M V30 31 C | M V30 31 C 2.54011 -4.53811 0.0 0 | ||
M V30 32 C | M V30 32 C 1.04245 -5.40469 0.0 0 | ||
M V30 33 C | M V30 33 C 2.04009 -5.40495 0.0 0 | ||
M V30 34 C | M V30 34 C 0.541399 -4.53818 0.0 0 | ||
M V30 35 C | M V30 35 C 2.03706 -3.66814 0.0 0 | ||
M V30 36 C | M V30 36 C 1.037 -3.67461 0.0 0 | ||
M V30 37 C | M V30 37 C 10.152 -4.36492 0.0 0 | ||
M V30 38 C | M V30 38 C 11.6496 -3.49834 0.0 0 | ||
M V30 39 C | M V30 39 C 10.652 -3.49808 0.0 0 | ||
M V30 40 C | M V30 40 C 12.1507 -4.36485 0.0 0 | ||
M V30 41 C | M V30 41 C 10.655 -5.23489 0.0 0 | ||
M V30 42 C | M V30 42 C 11.6551 -5.22843 0.0 0 | ||
M V30 43 C | M V30 43 C 6.13275 -1.19316 0.0 0 | ||
M V30 44 C | M V30 44 C 5.26618 0.304505 0.0 0 | ||
M V30 45 C | M V30 45 C 5.26592 -0.693131 0.0 0 | ||
M V30 46 C | M V30 46 C 6.13268 0.805557 0.0 0 | ||
M V30 47 C | M V30 47 C 7.00272 -0.690101 0.0 0 | ||
M V30 48 C | M V30 48 C 6.99626 0.309953 0.0 0 | ||
M V30 49 Zn | M V30 49 Zn 6.4 -4.425 0.0 0 CHG=2 | ||
M V30 END ATOM | M V30 END ATOM | ||
M V30 BEGIN BOND | M V30 BEGIN BOND | ||
Line 127: | Line 139: | ||
M V30 4 1 4 2 | M V30 4 1 4 2 | ||
M V30 5 2 5 4 | M V30 5 2 5 4 | ||
M V30 6 1 | M V30 6 1 6 10 | ||
M V30 7 | M V30 7 1 7 8 | ||
M V30 8 | M V30 8 2 8 6 | ||
M V30 9 2 | M V30 9 2 9 7 | ||
M V30 10 1 9 | M V30 10 1 10 9 | ||
M V30 11 1 | M V30 11 1 11 15 | ||
M V30 12 | M V30 12 1 12 13 | ||
M V30 13 | M V30 13 2 13 11 | ||
M V30 14 2 12 | M V30 14 2 14 12 | ||
M V30 15 1 | M V30 15 1 15 14 | ||
M V30 16 | M V30 16 1 16 20 | ||
M V30 17 1 | M V30 17 1 17 18 | ||
M V30 18 1 16 | M V30 18 1 18 16 | ||
M V30 19 2 17 | M V30 19 2 19 17 | ||
M V30 20 1 | M V30 20 1 20 19 | ||
M V30 21 | M V30 21 1 4 21 | ||
M V30 22 | M V30 22 2 21 15 | ||
M V30 23 1 | M V30 23 1 13 22 | ||
M V30 24 | M V30 24 2 22 20 | ||
M V30 25 | M V30 25 2 18 23 | ||
M V30 26 | M V30 26 1 23 7 | ||
M V30 27 | M V30 27 2 10 24 | ||
M V30 28 | M V30 28 1 24 3 | ||
M V30 29 1 | M V30 29 1 22 25 | ||
M V30 30 2 27 25 | M V30 30 2 27 25 | ||
M V30 31 2 28 26 | M V30 31 2 28 26 | ||
Line 157: | Line 169: | ||
M V30 34 2 29 30 | M V30 34 2 29 30 | ||
M V30 35 1 30 28 | M V30 35 1 30 28 | ||
M V30 36 1 | M V30 36 1 21 31 | ||
M V30 37 2 33 31 | M V30 37 2 33 31 | ||
M V30 38 2 34 32 | M V30 38 2 34 32 | ||
Line 164: | Line 176: | ||
M V30 41 2 35 36 | M V30 41 2 35 36 | ||
M V30 42 1 36 34 | M V30 42 1 36 34 | ||
M V30 43 1 | M V30 43 1 23 37 | ||
M V30 44 2 39 37 | M V30 44 2 39 37 | ||
M V30 45 2 40 38 | M V30 45 2 40 38 | ||
Line 171: | Line 183: | ||
M V30 48 2 41 42 | M V30 48 2 41 42 | ||
M V30 49 1 42 40 | M V30 49 1 42 40 | ||
M V30 50 1 | M V30 50 1 24 43 | ||
M V30 51 2 45 43 | M V30 51 2 45 43 | ||
M V30 52 2 46 44 | M V30 52 2 46 44 | ||
Line 178: | Line 190: | ||
M V30 55 2 47 48 | M V30 55 2 47 48 | ||
M V30 56 1 48 46 | M V30 56 1 48 46 | ||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
</chemform> | </chemform> | ||
====Investigation==== | |||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}} | |||
==== Sacrificial electron donor ==== | ==== Sacrificial electron donor ==== | ||
In this study, triethylamine ({{#moleculelink:|link=ZMANZCXQSJIPKH-UHFFFAOYSA-N|image=false|width=300|height=200}}) was used as sacrificial electron donor. | |||
==== Additives ==== | |||
In this study, no additives were used.[[Category:Publication]] |
Latest revision as of 10:37, 11 April 2024
Abstract[edit | edit source]
Summary[edit | edit source]
A photochemical reduction of CO2 was shown using the manganese catalyst Mn(bpy)(CO)3Br and the zinc photosensitizer ZnTPP. Turnover numbers (TONs) of 64 and 16 were reached after 180 min of irradiation for CO and formic acid, respectively. The experiments were performed using a Xenon lamp as the light source.
Advances and special progress[edit | edit source]
Photochemical CO2 conversion in an environmentally friendly and sustainable photocatalytic system using earth abundant metal complexes efficiently yielded CO and HCOOH in aqueous acetonitrile solution.
Additional remarks[edit | edit source]
The manganese catalyst and the zinc photosensitizer were used in different ratios, resulting in different TONs for CO and HCOOH production.
Content of the published article in detail[edit | edit source]
The article contains results for the reduction of CO2 to CO and HCOOH using different ratios of the catalyst and photosensitizer. The catalytic system performed best (referring to the TONs of CO and HCOOH production) for the catalyst:photosensitizer ratio of 4:1.
Catalyst[edit | edit source]
Photosensitizer[edit | edit source]
Investigation[edit | edit source]
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | . | . | λexc [nm] | . | TON CO | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 2 | 0.5 | 0.1 | xenon lamp | 119 | 19 | ||||||||
2. | 1.5 | 0.5 | 0.1 | xenon lamp | 97 | 18 | ||||||||
3. | 0.5 | 0.25 | 0.1 | xenon lamp | 64 | 16 | ||||||||
4. | 0.5 | 0.5 | 0.1 | xenon lamp | 12 | 10 | ||||||||
5. | 0.5 | 1 | 0.1 | xenon lamp | 8 | 6 | ||||||||
6. | 0.5 | 0.1 | xenon lamp | 2 | 1 | |||||||||
7. | 0.5 | 0.1 | xenon lamp |
Sacrificial electron donor[edit | edit source]
In this study, triethylamine (TEA) was used as sacrificial electron donor.
Additives[edit | edit source]
In this study, no additives were used.
Investigations
- Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)