Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction: Difference between revisions

From ChemWiki
(draft with wrong values)
(20 intermediate revisions by the same user not shown)
Line 3: Line 3:
{{BaseTemplate}}
{{BaseTemplate}}


===A [[Category:Publication]] bs [[Category:Publication]] tract===
===Abstract===
[[Category:Publication]]
[[Category:Publication]]
====Summary ====
====Summary ====
A {{Annotation|property=Tag|value=photocatalytic CO2 reduction; voc4cat; voc4cat:0000099|display=photochemical reduction of CO2}} and {{Annotation|property=Tag|value=CO;;|display=CO}} to {{Annotation|property=Tag|value=methane; chebi; CHEBI:16183,CH4;;|display=methane}} was shown using the {{Annotation|property=Tag|value=nickel;;|display=nickel}} carbene complexes {{#moleculelink: |link=QDSMZTKUFVYRKR-UHFFFAOYSA-N|image=false|width=300|height=200}}, {{#moleculelink:|link=NWZXUODUJQGAHV-UHFFFAOYSA-N|image=false|width=300|height=200}}, and {{#moleculelink:|link=BQELNTZVSDPWHI-UHFFFAOYSA-N|image=false|width=300|height=200}} as catalysts in combination with the iridium-based photosensitizer {{#moleculelink: |link=NSABRUJKERBGOU-UHFFFAOYSA-N|image=false|width=300|height=200}}. Turnover numbers (TONs) up to 310000 for CO and 19000 for CH<sub>4</sub> and selectivities of 90% for CO<sub>2</sub> reduction products were reached for complex {{#moleculelink:|link=BQELNTZVSDPWHI-UHFFFAOYSA-N|image=false|width=300|height=200}} in {{Annotation|property=Tag|value=|display=acetonitrile}}. The experiments were conducted under visible-light irradiation using BIH as sacrificial electron donor (see section SEDs below).
A {{Annotation|property=Tag|value=photocatalytic CO2 reduction; voc4cat; voc4cat:0000099|display=photochemical reduction of CO2}} to {{Annotation|property=Tag|value=CO;;|display=CO}} was shown using an Fe2+ and Co2+ complex as catalysts in combination with different photosensitizers. The authors examined the efficiency for photocatalytic CO2RR pending on metal−ligand exchange coupling as an example of charge delocalization. The iron complex {{#moleculelink:|link=YJOFQAAXFUIRKO-UHFFFAOYSA-N|image=false|width=300|height=200}} and cobalt complexes{{#moleculelink:|link=GEWRDVXFGQMHJL-UHFFFAOYSA-N|image=false|width=300|height=200}}, both bearing the redox-active ligand tpyPY2Me  were tested in comparison. It was found that the two-electron reduction of the Co(tpyPY2Me)]2+ catalyst {{#moleculelink:|link=GEWRDVXFGQMHJL-UHFFFAOYSA-N|image=false|width=300|height=200}} occurs at potentials 770 mV more negative than the Fe(tpyPY2Me)]2+ analogue{{#moleculelink:|link=YJOFQAAXFUIRKO-UHFFFAOYSA-N|image=false|width=300|height=200}} due to maximizing the exchange coupling in the latter compound.  
====Advances and special progress====
====Advances and special progress====
====Additional remarks====
====Additional remarks====
The macrocyclic nickel carbene complex {{#moleculelink:|link=NWZXUODUJQGAHV-UHFFFAOYSA-N|image=false|width=300|height=200}} gave a higher carbon-selective reduction percentage than the related complexes {{#moleculelink:|link=BQELNTZVSDPWHI-UHFFFAOYSA-N|image=false|width=300|height=200}} and {{#moleculelink: |link=QDSMZTKUFVYRKR-UHFFFAOYSA-N|image=false|width=300|height=200}}. The conversion of CO<sub>2</sub> to CO and methane as well as the conversion of a CO/H<sub>2</sub> atmosphere to methane were investigated with complex {{#moleculelink:|link=NWZXUODUJQGAHV-UHFFFAOYSA-N|image=false|width=300|height=200}}.
 
===Content of the published article in detail===
===Content of the published article in detail===
The article contains results for the reduction of CO<sub>2</sub> to CO and CH<sub>4</sub> and CO to CH<sub>4</sub> under visible-light catalysis using a nickel complex as a catalyst. The catalytic system performs best (referring to the TON of CH<sub>4</sub> production) in acetonitrile with a 1:1 CO/H<sub>2</sub> atmosphere.
 
===Catalysts tested in this study===
===Catalysts tested in this study===
<chemform smiles="C1C=C2C3C=CC=C4C5C=CC=C6C7(C8C=CC=CN=8[Fe+2](N#CC)(N8C7=CC=CC=8)(N=56)(N=34)N2=CC=1)C" inchi="1S/C27H21N5.C2H3N.Fe/c1-27(24-14-3-6-18-29-24,25-15-4-7-19-30-25)26-16-9-13-23(32-26)22-12-8-11-21(31-22)20-10-2-5-17-28-20;1-2-3;/h2-19H,1H3;1H3;/q;;+2" inchikey="YJOFQAAXFUIRKO-UHFFFAOYSA-N" height="200px" width="300px" float="none">
  -INDIGO-11172400022D
  0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 COUNTS 36 44 0 0 0
M  V30 BEGIN ATOM
M  V30 1 C -3.23952 -0.911479 0.0 0
M  V30 2 C -2.79762 -1.64865 0.0 0
M  V30 3 C -1.93826 -1.63453 0.0 0
M  V30 4 N -1.52081 -0.883244 0.0 0
M  V30 5 C -1.96271 -0.146077 0.0 0
M  V30 6 C -2.82207 -0.160195 0.0 0
M  V30 7 C -1.54526 0.605208 0.0 0
M  V30 8 N -0.685901 0.619325 0.0 0
M  V30 9 C -0.268449 1.37061 0.0 0
M  V30 10 C -0.710354 2.10778 0.0 0
M  V30 11 C -1.56971 2.09366 0.0 0
M  V30 12 C -1.98716 1.34238 0.0 0
M  V30 13 C 0.59091 1.38473 0.0 0
M  V30 14 N 1.03281 0.647561 0.0 0
M  V30 15 C 1.89217 0.661678 0.0 0
M  V30 16 C 2.30963 1.41296 0.0 0
M  V30 17 C 1.86772 2.15013 0.0 0
M  V30 18 C 1.00836 2.13601 0.0 0
M  V30 19 Fe 0.199123 -0.451758 0.0 0 CHG=2
M  V30 20 N 0.225271 -1.81802 0.0 0
M  V30 21 C -0.479574 -2.24676 0.0 0
M  V30 22 C -0.460695 -3.07155 0.0 0
M  V30 23 C 0.263029 -3.46759 0.0 0
M  V30 24 C 0.967873 -3.03885 0.0 0
M  V30 25 C 0.948994 -2.21407 0.0 0
M  V30 26 C 1.66347 -1.86344 0.0 0
M  V30 27 C 2.33535 -2.34218 0.0 0
M  V30 28 N 1.60783 -0.829237 0.0 0
M  V30 29 C 1.90962 -1.59705 0.0 0
M  V30 30 C 2.72547 -1.7196 0.0 0
M  V30 31 C 3.23952 -1.07433 0.0 0
M  V30 32 C 2.93773 -0.306511 0.0 0
M  V30 33 C 2.12188 -0.183966 0.0 0
M  V30 34 N 0.178498 2.35324 0.0 0
M  V30 35 C -0.188361 2.88423 0.0 0
M  V30 36 C -0.771725 3.46759 0.0 0
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 1 2 1 2
M  V30 2 1 2 3
M  V30 3 2 3 4
M  V30 4 1 4 5
M  V30 5 2 5 6
M  V30 6 1 6 1
M  V30 7 1 5 7
M  V30 8 2 7 8
M  V30 9 1 8 9
M  V30 10 2 9 10
M  V30 11 1 10 11
M  V30 12 2 11 12
M  V30 13 1 12 7
M  V30 14 1 9 13
M  V30 15 2 13 14
M  V30 16 1 14 15
M  V30 17 2 15 16
M  V30 18 1 16 17
M  V30 19 2 17 18
M  V30 20 1 18 13
M  V30 21 2 20 21
M  V30 22 1 21 22
M  V30 23 2 22 23
M  V30 24 1 23 24
M  V30 25 2 24 25
M  V30 26 1 25 20
M  V30 27 10 4 19
M  V30 28 10 8 19
M  V30 29 10 14 19
M  V30 30 10 20 19
M  V30 31 1 25 26
M  V30 32 1 15 26
M  V30 33 1 26 27
M  V30 34 2 28 29
M  V30 35 1 29 30
M  V30 36 2 30 31
M  V30 37 1 31 32
M  V30 38 2 32 33
M  V30 39 1 33 28
M  V30 40 1 29 26
M  V30 41 10 28 19
M  V30 42 3 34 35
M  V30 43 1 35 36
M  V30 44 10 34 19
M  V30 END BOND
M  V30 END CTAB
M  END
</chemform> <chemform smiles="C1C=C2C3C=CC=C4C5C=CC=C6C7(C8C=CC=CN=8[Co+2](N#CC)(N8C7=CC=CC=8)(N=56)(N=34)N2=CC=1)C" inchi="1S/C27H21N5.C2H3N.Co/c1-27(24-14-3-6-18-29-24,25-15-4-7-19-30-25)26-16-9-13-23(32-26)22-12-8-11-21(31-22)20-10-2-5-17-28-20;1-2-3;/h2-19H,1H3;1H3;/q;;+2" inchikey="GEWRDVXFGQMHJL-UHFFFAOYSA-N" height="200px" width="300px" float="none">
  -INDIGO-11172400032D
  0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 COUNTS 36 44 0 0 0
M  V30 BEGIN ATOM
M  V30 1 C -3.23952 -0.911479 0.0 0
M  V30 2 C -2.79762 -1.64865 0.0 0
M  V30 3 C -1.93826 -1.63453 0.0 0
M  V30 4 N -1.52081 -0.883244 0.0 0
M  V30 5 C -1.96271 -0.146077 0.0 0
M  V30 6 C -2.82207 -0.160195 0.0 0
M  V30 7 C -1.54526 0.605208 0.0 0
M  V30 8 N -0.685901 0.619325 0.0 0
M  V30 9 C -0.268449 1.37061 0.0 0
M  V30 10 C -0.710354 2.10778 0.0 0
M  V30 11 C -1.56971 2.09366 0.0 0
M  V30 12 C -1.98716 1.34238 0.0 0
M  V30 13 C 0.59091 1.38473 0.0 0
M  V30 14 N 1.03281 0.647561 0.0 0
M  V30 15 C 1.89217 0.661678 0.0 0
M  V30 16 C 2.30963 1.41296 0.0 0
M  V30 17 C 1.86772 2.15013 0.0 0
M  V30 18 C 1.00836 2.13601 0.0 0
M  V30 19 Co 0.199123 -0.451758 0.0 0 CHG=2
M  V30 20 N 0.225271 -1.81802 0.0 0
M  V30 21 C -0.479574 -2.24676 0.0 0
M  V30 22 C -0.460695 -3.07155 0.0 0
M  V30 23 C 0.263029 -3.46759 0.0 0
M  V30 24 C 0.967873 -3.03885 0.0 0
M  V30 25 C 0.948994 -2.21407 0.0 0
M  V30 26 C 1.66347 -1.86344 0.0 0
M  V30 27 C 2.33535 -2.34218 0.0 0
M  V30 28 N 1.60783 -0.829237 0.0 0
M  V30 29 C 1.90962 -1.59705 0.0 0
M  V30 30 C 2.72547 -1.7196 0.0 0
M  V30 31 C 3.23952 -1.07433 0.0 0
M  V30 32 C 2.93773 -0.306511 0.0 0
M  V30 33 C 2.12188 -0.183966 0.0 0
M  V30 34 N 0.178498 2.35324 0.0 0
M  V30 35 C -0.188361 2.88423 0.0 0
M  V30 36 C -0.771725 3.46759 0.0 0
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 1 2 1 2
M  V30 2 1 2 3
M  V30 3 2 3 4
M  V30 4 1 4 5
M  V30 5 2 5 6
M  V30 6 1 6 1
M  V30 7 1 5 7
M  V30 8 2 7 8
M  V30 9 1 8 9
M  V30 10 2 9 10
M  V30 11 1 10 11
M  V30 12 2 11 12
M  V30 13 1 12 7
M  V30 14 1 9 13
M  V30 15 2 13 14
M  V30 16 1 14 15
M  V30 17 2 15 16
M  V30 18 1 16 17
M  V30 19 2 17 18
M  V30 20 1 18 13
M  V30 21 2 20 21
M  V30 22 1 21 22
M  V30 23 2 22 23
M  V30 24 1 23 24
M  V30 25 2 24 25
M  V30 26 1 25 20
M  V30 27 10 4 19
M  V30 28 10 8 19
M  V30 29 10 14 19
M  V30 30 10 20 19
M  V30 31 1 25 26
M  V30 32 1 15 26
M  V30 33 1 26 27
M  V30 34 2 28 29
M  V30 35 1 29 30
M  V30 36 2 30 31
M  V30 37 1 31 32
M  V30 38 2 32 33
M  V30 39 1 33 28
M  V30 40 1 29 26
M  V30 41 10 28 19
M  V30 42 3 34 35
M  V30 43 1 35 36
M  V30 44 10 34 19
M  V30 END BOND
M  V30 END CTAB
M  END
</chemform>


=== Photosensitizer ===
=== Photosensitizer ===
<chemform smiles="N12[Ru+2](N3=CC=CC=C3C1=CC=CC=2)1(N2C(C3N1=CC=CC=3)=CC=CC=2)1N2C=CC=CC=2C2=N1C=CC=C2" inchi="1S/3C10H8N2.Ru/c3*1-3-7-11-9(5-1)10-6-2-4-8-12-10;/h3*1-8H;/q;;;+2" inchikey="HNVRWFFXWFXICS-UHFFFAOYSA-N" height="200px" width="300px" float="none">
  -INDIGO-02142311402D
  0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 COUNTS 37 45 0 0 0
M  V30 BEGIN ATOM
M  V30 1 N 10.4686 -4.89367 0.0 0
M  V30 2 C 9.86013 -3.35178 0.0 0
M  V30 3 C 9.7559 -4.32845 0.0 0
M  V30 4 C 10.5812 -2.93696 0.0 0
M  V30 5 C 11.2912 -4.28715 0.0 0
M  V30 6 C 11.2672 -3.32813 0.0 0
M  V30 7 C 11.926 -4.59035 0.0 0
M  V30 8 C 13.407 -4.41796 0.0 0
M  V30 9 C 12.6927 -4.07702 0.0 0
M  V30 10 C 13.4744 -5.24515 0.0 0
M  V30 11 N 11.9424 -5.66607 0.0 0
M  V30 12 C 12.7601 -5.88523 0.0 0
M  V30 13 N 12.1907 -7.31984 0.0 0
M  V30 14 C 13.8922 -7.57782 0.0 0
M  V30 15 C 13.0884 -6.97298 0.0 0
M  V30 16 C 13.8688 -8.43063 0.0 0
M  V30 17 C 12.3039 -8.35398 0.0 0
M  V30 18 C 13.1498 -8.81725 0.0 0
M  V30 19 C 11.6693 -8.71536 0.0 0
M  V30 20 C 11.0428 -10.0631 0.0 0
M  V30 21 C 11.7283 -9.63489 0.0 0
M  V30 22 C 10.2824 -9.6709 0.0 0
M  V30 23 N 10.7291 -8.179 0.0 0
M  V30 24 C 10.1211 -8.72059 0.0 0
M  V30 25 C 7.40786 -6.05302 0.0 0
M  V30 26 C 7.41674 -5.26498 0.0 0
M  V30 27 C 8.98334 -5.17125 0.0 0
M  V30 28 C 8.22399 -6.45531 0.0 0
M  V30 29 N 9.14653 -5.94372 0.0 0
M  V30 30 C 8.17252 -7.17954 0.0 0
M  V30 31 C 8.93917 -8.5102 0.0 0
M  V30 32 N 9.12933 -7.59242 0.0 0
M  V30 33 C 8.01894 -8.86654 0.0 0
M  V30 34 C 7.37472 -7.63591 0.0 0
M  V30 35 C 7.32652 -8.42014 0.0 0
M  V30 36 C 8.11795 -4.83872 0.0 0
M  V30 37 Ru 10.613 -6.61608 0.0 0 CHG=2
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 1 2 3 1
M  V30 2 2 4 2
M  V30 3 1 1 5
M  V30 4 1 2 3
M  V30 5 2 5 6
M  V30 6 1 6 4
M  V30 7 1 5 7
M  V30 8 2 9 7
M  V30 9 2 10 8
M  V30 10 1 7 11
M  V30 11 1 8 9
M  V30 12 2 11 12
M  V30 13 1 12 10
M  V30 14 2 15 13
M  V30 15 2 16 14
M  V30 16 1 13 17
M  V30 17 1 14 15
M  V30 18 2 17 18
M  V30 19 1 18 16
M  V30 20 1 17 19
M  V30 21 2 21 19
M  V30 22 2 22 20
M  V30 23 1 19 23
M  V30 24 1 20 21
M  V30 25 2 23 24
M  V30 26 1 24 22
M  V30 27 2 26 25
M  V30 28 1 25 28
M  V30 29 2 28 29
M  V30 30 1 29 27
M  V30 31 1 28 30
M  V30 32 2 32 30
M  V30 33 2 33 31
M  V30 34 1 30 34
M  V30 35 1 31 32
M  V30 36 2 34 35
M  V30 37 1 35 33
M  V30 38 2 27 36
M  V30 39 1 36 26
M  V30 40 10 29 37
M  V30 41 10 32 37
M  V30 42 10 23 37
M  V30 43 10 13 37
M  V30 44 10 11 37
M  V30 45 10 1 37
M  V30 END BOND
M  V30 END CTAB
M  END
</chemform><chemform smiles="NC1C=C2[N+](=C3C(=CC2=CC=1)C=CC(N)=C3)C" inchi="1S/C14H13N3/c1-17-13-7-11(15)4-2-9(13)6-10-3-5-12(16)8-14(10)17/h2-8H,1H3,(H3,15,16)/p+1" inchikey="XSIOKTWDEOJMGG-UHFFFAOYSA-O" height="200px" width="300px" float="none">
  -INDIGO-11172411382D
  0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 COUNTS 17 19 0 0 0
M  V30 BEGIN ATOM
M  V30 1 N -2.59808 -0.5 0.0 0
M  V30 2 C -1.73205 0.0 0.0 0
M  V30 3 C -1.73205 1.0 0.0 0
M  V30 4 C -0.866025 1.5 0.0 0
M  V30 5 C 0.0 1.0 0.0 0
M  V30 6 C 0.0 0.0 0.0 0
M  V30 7 N 0.866026 -0.5 0.0 0 CHG=1
M  V30 8 C 0.866025 -1.5 0.0 0
M  V30 9 C 1.73205 0.0 0.0 0
M  V30 10 C 2.59808 -0.5 0.0 0
M  V30 11 C 3.4641 0.0 0.0 0
M  V30 12 N 4.33013 -0.5 0.0 0
M  V30 13 C 3.4641 1 0.0 0
M  V30 14 C 2.59808 1.5 0.0 0
M  V30 15 C 1.73205 1 0.0 0
M  V30 16 C 0.866026 1.5 0.0 0
M  V30 17 C -0.866025 -0.5 0.0 0
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 1 1 1 2
M  V30 2 2 2 3
M  V30 3 1 3 4
M  V30 4 2 4 5
M  V30 5 1 5 6
M  V30 6 1 6 7
M  V30 7 1 7 8
M  V30 8 2 7 9
M  V30 9 1 9 10
M  V30 10 2 10 11
M  V30 11 1 11 12
M  V30 12 1 11 13
M  V30 13 2 13 14
M  V30 14 1 9 15
M  V30 15 1 15 14
M  V30 16 2 15 16
M  V30 17 1 16 5
M  V30 18 2 6 17
M  V30 19 1 17 2
M  V30 END BOND
M  V30 END CTAB
M  END
</chemform>  <chemform smiles="[Ir+]1(N2C=C(C=CC=2C2=C(F)C=C(F)C=C21)C(F)(F)F)1(C2C=C(F)C=C(F)C=2C2N1=CC(=CC=2)C(F)(F)F)1N2C=CC(C(C)(C)C)=CC=2C2=CC(C(C)(C)C)=CC=N21" inchi="1S/C18H24N2.2C12H5F5N.Ir/c1-17(2,3)13-7-9-19-15(11-13)16-12-14(8-10-20-16)18(4,5)6;2*13-8-2-3-9(10(14)5-8)11-4-1-7(6-18-11)12(15,16)17;/h7-12H,1-6H3;2*1-2,4-6H;/q;;;+1" inchikey="OZUQNBMGKZFLJQ-UHFFFAOYSA-N" height="200px" width="300px" float="none">
  -INDIGO-11172411402D
  0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 COUNTS 57 65 2 0 0
M  V30 BEGIN ATOM
M  V30 1 Ir -0.352408 -0.02048 0.0 0 CHG=1
M  V30 2 C -3.22713 1.53262 0.0 0
M  V30 3 C -3.23259 0.70764 0.0 0
M  V30 4 C -2.52086 0.290423 0.0 0
M  V30 5 C -1.80368 0.698189 0.0 0
M  V30 6 C -1.79822 1.52317 0.0 0
M  V30 7 C -2.50995 1.94039 0.0 0
M  V30 8 C -1.08104 1.93094 0.0 0
M  V30 9 N -0.369308 1.51372 0.0 0
M  V30 10 C 0.347875 1.92148 0.0 0
M  V30 11 C 0.353331 2.74647 0.0 0
M  V30 12 C -0.358395 3.16368 0.0 0
M  V30 13 C -1.07558 2.75592 0.0 0
M  V30 14 C 2.50507 1.62732 0.0 0
M  V30 15 C 1.78864 2.03641 0.0 0
M  V30 16 C 1.07615 1.62049 0.0 0
M  V30 17 N 1.08009 0.795504 0.0 0
M  V30 18 C 1.79652 0.386423 0.0 0
M  V30 19 C 2.50901 0.802334 0.0 0
M  V30 20 C 1.80047 -0.438567 0.0 0
M  V30 21 N 1.08798 -0.854477 0.0 0
M  V30 22 C 1.09192 -1.67947 0.0 0
M  V30 23 C 1.80835 -2.08855 0.0 0
M  V30 24 C 2.52084 -1.67264 0.0 0
M  V30 25 C 2.5169 -0.847647 0.0 0
M  V30 26 C -2.47922 -0.244491 0.0 0
M  V30 27 C -3.19695 -0.65131 0.0 0
M  V30 28 C -3.20349 -1.47628 0.0 0
M  V30 29 C -2.49231 -1.89444 0.0 0
M  V30 30 C -1.77459 -1.48762 0.0 0
M  V30 31 C -1.76805 -0.662645 0.0 0
M  V30 32 C -1.06342 -1.90577 0.0 0
M  V30 33 C -1.06996 -2.73075 0.0 0
M  V30 34 C -0.358784 -3.1489 0.0 0
M  V30 35 C 0.358936 -2.74208 0.0 0
M  V30 36 C 0.365481 -1.91711 0.0 0
M  V30 37 N -0.345696 -1.49895 0.0 0
M  V30 38 C 3.21756 2.04324 0.0 0
M  V30 39 C 3.23728 -2.08172 0.0 0
M  V30 40 F -2.50449 2.76537 0.0 0
M  V30 41 F -3.94977 0.299875 0.0 0
M  V30 42 F -3.90812 -0.233155 0.0 0
M  V30 43 F -2.49886 -2.71941 0.0 0
M  V30 44 C 3.21362 2.86823 0.0 0
M  V30 45 C 3.934 1.63416 0.0 0
M  V30 46 C 3.93005 2.45915 0.0 0
M  V30 47 C 3.24122 -2.90671 0.0 0
M  V30 48 C 3.94977 -1.66581 0.0 0
M  V30 49 C 3.23334 -1.25673 0.0 0
M  V30 50 C 1.07052 3.15423 0.0 0
M  V30 51 F 1.47828 2.43705 0.0 0
M  V30 52 F 1.7877 3.562 0.0 0
M  V30 53 F 0.66275 3.87141 0.0 0
M  V30 54 C 1.07011 -3.16024 0.0 0
M  V30 55 F 0.651958 -3.87141 0.0 0
M  V30 56 F 1.78129 -3.57839 0.0 0
M  V30 57 F 1.48827 -2.44906 0.0 0
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 1 1 50 51
M  V30 2 1 50 52
M  V30 3 1 50 53
M  V30 4 1 11 50
M  V30 5 1 54 55
M  V30 6 1 54 56
M  V30 7 1 54 57
M  V30 8 1 35 54
M  V30 9 2 2 3
M  V30 10 1 3 4
M  V30 11 2 4 5
M  V30 12 1 5 6
M  V30 13 2 6 7
M  V30 14 1 7 2
M  V30 15 1 6 8
M  V30 16 2 8 9
M  V30 17 1 9 10
M  V30 18 2 10 11
M  V30 19 1 11 12
M  V30 20 2 12 13
M  V30 21 1 13 8
M  V30 22 2 14 15
M  V30 23 1 15 16
M  V30 24 2 16 17
M  V30 25 1 17 18
M  V30 26 2 18 19
M  V30 27 1 19 14
M  V30 28 1 18 20
M  V30 29 2 20 21
M  V30 30 1 21 22
M  V30 31 2 22 23
M  V30 32 1 23 24
M  V30 33 2 24 25
M  V30 34 1 25 20
M  V30 35 2 26 27
M  V30 36 1 27 28
M  V30 37 2 28 29
M  V30 38 1 29 30
M  V30 39 2 30 31
M  V30 40 1 31 26
M  V30 41 1 30 32
M  V30 42 2 32 33
M  V30 43 1 33 34
M  V30 44 2 34 35
M  V30 45 1 35 36
M  V30 46 2 36 37
M  V30 47 1 37 32
M  V30 48 10 17 1
M  V30 49 10 21 1
M  V30 50 10 37 1
M  V30 51 1 31 1
M  V30 52 1 14 38
M  V30 53 1 24 39
M  V30 54 1 7 40
M  V30 55 1 3 41
M  V30 56 1 27 42
M  V30 57 1 29 43
M  V30 58 1 38 44
M  V30 59 1 38 45
M  V30 60 1 38 46
M  V30 61 1 39 47
M  V30 62 1 39 48
M  V30 63 1 39 49
M  V30 64 1 5 1
M  V30 65 10 9 1
M  V30 END BOND
M  V30 BEGIN SGROUP
M  V30 1 SUP 1 ATOMS=(4 50 51 52 53) BRKXYZ=(9 0.000000 0.000000 0.000000 0.0-
M  V30 00000 0.000000 0.000000 0.000000 0.000000 0.000000) BRKXYZ=(9 0.000000-
M  V30  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000-
M  V30 00) LABEL=CF3
M  V30 2 SUP 2 ATOMS=(4 54 55 56 57) BRKXYZ=(9 0.000000 0.000000 0.000000 0.0-
M  V30 00000 0.000000 0.000000 0.000000 0.000000 0.000000) BRKXYZ=(9 0.000000-
M  V30  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000-
M  V30 00) LABEL=CF3
M  V30 END SGROUP
M  V30 END CTAB
M  END
</chemform> <chemform smiles="" inchi="" inchikey="NSABRUJKERBGOU-UHFFFAOYSA-N" height="200px" width="300px" float="none"></chemform>


=== Investigation ===
=== Investigation ===


===Further Information===
 
The Supporting Information gives quantum yields for described experiments in Table 1.
General details for the experimental setup: Conducted inside a 25 mL borosilicate culture tube with a stir bar, a rubber septum, and an aluminum crimped top. The reaction vessel contained 5 mL of CH3CN, 2 μM of the catalyst, 200 μM of the photosensitizer, 100 mM BIH (112 mg), and 1 M phenol (470 mg). The reaction tubes were sparged with CO2 for 10 min, followed by injection of a gaseous internal standard (0.1 mL of C2H6). The reactions were placed on a stirplate 13 cm from two Kessil blue LED lamps (440 nm) for 15 or 30 min at a time and maintained at ambient temperature using a fan. Analysis of the headspace by Gas Chromatography (GC).{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=CO2 Reduction under diverse conditions with diverse sensitizers|importFile=Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction_2.xlsx}}
 
The values in Table 2 include TOF numbers given in TON/h
 
 
 
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 2 Co catalyst testing|importFile=Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction_Table2.xlsx}}
 
 
 
=== Further Information ===
The results for the catalytic activity of the Co2+ compound {{#moleculelink:|link=GEWRDVXFGQMHJL-UHFFFAOYSA-N|image=false|width=300|height=200}} in Table 2 were gained from the Supporting Information.  
====Sacrificial electron donor====
====Sacrificial electron donor====
In this study, the experiments were done with the sacrificial electron donor BIH ([[Molecule:100508|100508]]).
In this study, the experiments were done with the sacrificial electron donor BIH ([[Molecule:100508|100508]]).
====Additives====
====Additives====
Different sources of protons were used, e.g. {{#moleculelink:|link=ISWSIDIOOBJBQZ-UHFFFAOYSA-N|image=false|width=300|height=200}}, {{#moleculelink:|link=RHQDFWAXVIIEBN-UHFFFAOYSA-N|image=false|width=300|height=200}} and {{#moleculelink:|link=WXNZTHHGJRFXKQ-UHFFFAOYSA-N|image=false|width=300|height=200}}

Revision as of 23:47, 17 November 2024


Abstract

Summary

A photochemical reduction of CO2 to CO was shown using an Fe2+ and Co2+ complex as catalysts in combination with different photosensitizers. The authors examined the efficiency for photocatalytic CO2RR pending on metal−ligand exchange coupling as an example of charge delocalization. The iron complex 100968 and cobalt complexes100969, both bearing the redox-active ligand tpyPY2Me were tested in comparison. It was found that the two-electron reduction of the Co(tpyPY2Me)]2+ catalyst 100969 occurs at potentials 770 mV more negative than the Fe(tpyPY2Me)]2+ analogue100968 due to maximizing the exchange coupling in the latter compound.

Advances and special progress

Additional remarks

Content of the published article in detail

Catalysts tested in this study

100968 100969

Photosensitizer

Ru(bpy)3 3,6-Diamino-10-methylacridinium 100971 Ir(ppy)3

Investigation

General details for the experimental setup: Conducted inside a 25 mL borosilicate culture tube with a stir bar, a rubber septum, and an aluminum crimped top. The reaction vessel contained 5 mL of CH3CN, 2 μM of the catalyst, 200 μM of the photosensitizer, 100 mM BIH (112 mg), and 1 M phenol (470 mg). The reaction tubes were sparged with CO2 for 10 min, followed by injection of a gaseous internal standard (0.1 mL of C2H6). The reactions were placed on a stirplate 13 cm from two Kessil blue LED lamps (440 nm) for 15 or 30 min at a time and maintained at ambient temperature using a fan. Analysis of the headspace by Gas Chromatography (GC).

catcat conc [µM]PSPS conc [mM]e-De-D conc [M]..solvent Aadditives..TON COTON H2..
1.

Molecule:100968

2

Ru(bpy)3

0.2

BIH

0.1

MeCN

1552086
2.

Molecule:100968

0.2

Ru(bpy)3

0.2

BIH

0.1

MeCN

303491013
3.


Ru(bpy)3

0.2

BIH

0.1

MeCN

4352
4.

Molecule:100968

2


BIH

0.1

MeCN

1120
5.

Molecule:100968

2

Ru(bpy)3

0.2


MeCN

1500
6.

Molecule:100968

2

Ru(bpy)3

0.2

BIH

0.1

MeCN

60
7.

Molecule:100968

2

Ru(bpy)3

0.2

BIH

0.1

MeCN

Ar0222
8.

Molecule:100968

2

Molecule:100971

0.2

BIH

0.1

MeCN

12749163
9.

Molecule:100968

0.2

Molecule:100971

0.2

BIH

0.1

MeCN

287126527
10.

Molecule:100968

2

Ir(ppy)3

0.2

BIH

0.1

MeCN

18502141
11.

Molecule:100968

2

Molecule:100970

0.2

BIH

0.1

MeCN

67100

The values in Table 2 include TOF numbers given in TON/h


"Molecule:" can not be assigned to a declared number type with value 100973."Molecule:" can not be assigned to a declared number type with value 100974."Molecule:" can not be assigned to a declared number type with value 100975.<ul><li>"Molecule:" can not be assigned to a declared number type with value 100976.</li> <!--br--><li>"Molecule:" can not be assigned to a declared number type with value 1009792.</li></ul><ul><li>"Molecule:" can not be assigned to a declared number type with value 100977.</li> <!--br--><li>"Molecule:" can not be assigned to a declared number type with value 1009819.</li></ul>"Molecule:" can not be assigned to a declared number type with value 100978."Molecule:" can not be assigned to a declared number type with value 100979."Molecule:" can not be assigned to a declared number type with value 100980."Molecule:" can not be assigned to a declared number type with value 100981.
catcat conc [µM]PSPS conc [mM]e-De-D conc [M]..solvent A......
1.

Molecule:100969

2

Ru(bpy)3

0.2

BIH

0.1

MeCN

2.

Molecule:100969

2

Molecule:100971

0.2

BIH

0.1

MeCN

3.

Molecule:100969

2

Ir(ppy)3

0.2

BIH

0.05

MeCN

4.

Molecule:100969

2

Molecule:100971

0.2

BIH

0.05

MeCN

5.

Molecule:100969

2

Ru(bpy)3

0.2

BIH

0.05

MeCN

6.

Molecule:100969

2

Molecule:100971

0.2

TEA

0.05

MeCN

7.

Molecule:100969

2

Molecule:100971

0.2

TEA

0.05

MeCN

8.

Molecule:100969

2

Molecule:100971

0.2

TEA

0.05

MeCN

9.

Molecule:100969

2

Molecule:100971

0.2

TEA

0.05

MeCN

Investigation-Name: Table 2 Co catalyst testing


Further Information

The results for the catalytic activity of the Co2+ compound 100969 in Table 2 were gained from the Supporting Information.

Sacrificial electron donor

In this study, the experiments were done with the sacrificial electron donor BIH (100508).

Additives

Different sources of protons were used, e.g. PhOH, TFE and 4-CHLOROPHENOL

Investigations

Tags

TagContains tags that describe the content of the page.: photocatalytic CO2 reduction (Ontology: voc4cat, OBOID: voc4cat:0000099), TagContains tags that describe the content of the page.: CO