An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2

From ChemWiki
Revision as of 11:41, 8 February 2024 by 84.178.65.207 (talk)

publication
About
DOI 10.1039/c9cc03943k
Authors Yasmeen Hameed, Patrick Berro, Bulat Gabidullin, Darrin Richeson,
Submitted 16.08.2019
Published online 2019
Licenses http://rsc.li/journals-terms-of-use,
Subjects Materials Chemistry, Metals and Alloys, Surfaces, Coatings and Films, General Chemistry, Ceramics and Composites, Electronic, Optical and Magnetic Materials, Catalysis
Go to literature page


Abstract

Summary

A photochemical reduction of CO2 to formic acid was shown using the rhenium catalyst and sensitizer [Re(bpy)2(CO)2][OTf] in combination with the supplemental photosensitizer [Ru(bpy)3][PF6]. Turnover numbers (TONs) up to 2750 for formic acid were reached in dimethylacetamide. The experiments were conducted under visible-light irradiation (λ = 405 nm) with TEOA (see section SEDs below) as sacrificial electron donor.

Advances and special progress

A unprecedented rhenium complex was used as an integrated photosensitizer/catalyst to generate formic acid from CO2; other rhenium catalysts only allow for the formation of CO as the reduction product.

Additional remarks

The complex [Re(bpy)2(CO)2][OTf] can act both as a photocatalyst and sensitizer, but its performance is considerably enhanced by the addition of [Ru(bpy)3][PF6] as supplemental photosensitizer. The variation of the catalyst concentration also showed a drastic influence on the performance of the catalytic system.

Content of the published article in detail

The article contains results for the reduction of CO2 to formic acid under visible-light catalysis using a rhenium complex as a catalyst. The catalytic system performs best (referring to the TON of formic acid production) in dimethylacetamide.

Catalyst

[Re(bpy)2(CO)2][OTf]

Photosensitizer

[Ru(bpy)3][PF6]

Investigations

catcat conc [µM]PSPS conc [mM]e-Dsolvent A..λexc [nm].TON H2TON HCOOH.
1.


[Ru(bpy)3][PF6]

0.8

TEOA

DMA

405 nm1.7512.5
2.


[Ru(bpy)3][PF6]

0.8

TEOA

DMF

405 nm215
3.


[Ru(bpy)3][PF6]

0.8

TEOA

MeCN

405 nm1.52.5
4.

[Re(bpy)2(CO)2][OTf]

0.8


TEOA

DMA

405 nm10.3
5.

[Re(bpy)2(CO)2][OTf]

0.8

[Ru(bpy)3][PF6]

0.8

TEOA

DMA

405 nm1.552
6.

[Re(bpy)2(CO)2][OTf]

0.8


TEOA

DMF

405 nm0.810.8
7.

[Re(bpy)2(CO)2][OTf]

0.8

[Ru(bpy)3][PF6]

0.8

TEOA

DMF

405 nm2.866
8.

[Re(bpy)2(CO)2][OTf]

0.8

[Ru(bpy)3][PF6]

0.8

TEOA

MeCN

405 nm
9.

[Re(bpy)2(CO)2][OTf]

0.8

[Ru(bpy)3][PF6]

0.8

TEOA

MeCN

405 nm2.811.5
catcat conc [µM]PSPS conc [mM]e-Dsolvent A..λexc [nm].TON H2TON HCOOH.
1.

[Re(bpy)2(CO)2][OTf]

0.2

[Ru(bpy)3][PF6]

0.2

TEOA

DMF

405 nm00
2.

[Re(bpy)2(CO)2][OTf]

0.2

[Ru(bpy)3][PF6]

0.2

TEOA

DMF

405 nm112.5
3.

[Re(bpy)2(CO)2][OTf]

0.2

[Ru(bpy)3][PF6]

0.2

TEOA

DMF

405 nm2.519.5
4.

[Re(bpy)2(CO)2][OTf]

0.2

[Ru(bpy)3][PF6]

0.2

TEOA

DMF

405 nm4.550.5
5.

[Re(bpy)2(CO)2][OTf]

0.2

[Ru(bpy)3][PF6]

0.2

TEOA

DMF

405 nm659.5
6.

[Re(bpy)2(CO)2][OTf]

0.2

[Ru(bpy)3][PF6]

0.2

TEOA

DMF

405 nm8.569.25
Experiment-Name: Time profile in DMF
Experiment-Name: Effect of proton donor

Sacrificial electron donor

In this study, the experiments were done with the sacrificial electron donor TEOA (100507).

Additives

In this study, the experiments were done with the additives water (H2O) and phenol (PhOH).

Investigations