Mn-carbonyl molecular catalysts containing a redox-active phenanthroline-5,6-dione for selective electro- and photoreduction of CO2 to CO or HCOOH

From ChemWiki
Revision as of 14:39, 22 January 2024 by Laura (talk | contribs)

publication
About
DOI 10.1016/j.electacta.2017.04.080
Authors Matthew Stanbury, Jean-Daniel Compain, Monica Trejo, Parker Smith, Eric Gouré, Sylvie Chardon-Noblat,
Submitted 18.04.2017
Licenses https://www.elsevier.com/tdm/userlicense/1.0/,
Subjects Electrochemistry, General Chemical Engineering
Go to literature page


Abstract

Summary

A photochemical reduction of CO2 to CO or formic acid was shown using the manganese complexes Mn(phdk)(CO)3Br (100691) or Mn(phdk)(CO)3(MeCN) (100693) as catalyst in combination with the ruthenium-based photosensitizer Ru(bpy)3Cl2 (100787), comparing the results to the previously reported catalysts Mn(phen)(CO)3Br (100708) and Mn(bpy)(CO)3Br (100752). Turnover numbers (TONs) of 58 for formic acid were reached in acetonitrile with complex Mn(phdk)(CO)3(MeCN) (100693). The experiments were conducted under visible-light irradiation (λ = 480 or 500 nm) using TEOA and BNAH as sacrificial electron donors (see section SEDs below).

Advances and special progress

The efficiency of formic acid generation from CO2 was improved compared to a previously reported manganese complex. The increased water solubility of one of the novel complexes may enable photo- or electrocatalytic CO2 reduction in aqueous media.

Additional remarks

In electrochemical CO2 reduction experiments, a high selectivity for CO formation was observed, contrary to the preferential formation of formic acid in the photocatalytic CO2 reduction.

Content of the published article in detail

The article contains results for the reduction of CO2 to formic acid under visible-light catalysis using manganese complexes as catalysts. The catalytic system performs best (referring to the TON of formic acid production) in acetonitrile using catalyst Mn(phdk)(CO)3(MeCN) (100693).

Catalyst

Mn(phdk)(CO)3Br (100691) Mn(phdk)(CO)3(MeCN) (100693) Mn(phen)(CO)3Br (100708) Mn(bpy)(CO)3Br (100752)

Photosensitizer

Ru(bpy)3Cl2 (100787)

Investigation

catcat conc [µM]PSPS conc [mM]e-De-D conc [M]solvent A...additivesλexc [nm].TON COTON HCOOH..
(edit)1.Mn(phdk)(CO)3BrRu(bpy)3Cl2100BNAH0.1MeCN480852
(edit)2.Mn(phdk)(CO)3(MeCN)Ru(bpy)3Cl2100BNAH0.1MeCN4801558
(edit)3.Mn(phdk)(CO)3(MeCN)Ru(bpy)3Cl2100BNAH0.1MeCN480948
(edit)4.Mn(bpy)(CO)3BrRu(bpy)3Cl2100BNAH0.1MeCN4804715
(edit)5.Mn(phdk)(CO)3(MeCN)Ru(bpy)3Cl2100BNAH0.1MeCN500740
(edit)6.Mn(phdk)(CO)3(MeCN)Ru(bpy)3Cl2100BNAH0.1MeCN457734
(edit)7.Mn(phdk)(CO)3(MeCN)2Ru(bpy)3Cl2100BNAH0.1MeCN480518
(edit)8.Mn(phdk)(CO)3(MeCN)Ru(bpy)3Cl2200BNAH0.1MeCN480852
(edit)9.Mn(phdk)(CO)3(MeCN)Ru(bpy)3Cl2100BNAH0.1MeCN480
(edit)10.Mn(phdk)(CO)3(MeCN)Ru(bpy)3Cl2100BNAH0.1MeCN500
(edit)11.Mn(phdk)(CO)3(MeCN)Ru(bpy)3Cl2100MeCN4803
(edit)12.Mn(phdk)(CO)3(MeCN)BNAH0.1MeCN500
(edit)13.Mn(phdk)(CO)3BrRu(bpy)3Cl2100BNAH0.1MeCNArgon gas480
(edit)14.Ru(bpy)3Cl2100BNAH0.1MeCN480
(edit)15.Ru(bpy)3Cl2100BNAH0.1MeCN480
(edit)16.Mn(phdk)(CO)3BrRu(bpy)3Cl2100BNAH0.1DMF4802122
(edit)17.Mn(phdk)(CO)3BrRu(bpy)3Cl2100BNAH0.1DMF4802
(edit)18.Mn(phdk)(CO)3BrRu(bpy)3Cl2100DMF480913
(edit)19.Mn(phen)(CO)3BrRu(bpy)3Cl2100BNAH0.1DMF480174
(edit)20.Mn(bpy)(CO)3BrRu(bpy)3Cl2100BNAH0.1DMF480639
(edit)21.Mn(phdk)(CO)3(MeCN)Ru(bpy)3Cl2100H2Oascorbic acid/NaA480
(edit)22.Mn(phdk)(CO)3(MeCN)Ru(bpy)3Cl2100H2Oascorbic acid/NaA500

Investigation-Name: Table 1

Sacrificial electron donor

In this study, the experiments were done with the sacrificial electron donors TEOA (100507) and BNAH (BNAH (100509)).

Additives

In this study, ascorbic acid was tested as an additive and control experiments under argon atmosphere were performed.

Investigations

  • Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)