Photochemical reduction of carbon dioxide to formic acid

From ChemWiki
Revision as of 09:37, 15 February 2023 by ChN (talk | contribs) (Linked pages, comment)

publication
About
DOI 10.1039/d0gc04040a
Authors Robin Cauwenbergh, Shoubhik Das,
Submitted 24.02.2021
Published online 2021
Licenses http://rsc.li/journals-terms-of-use,
Subjects Pollution, Environmental Chemistry
Go to literature page


Review

[Pro21]

Table 1

35 J. Hawecker, J.-M. Lehn and R. Ziessel, ChemComm, 1985, 56, DOI: 10.1039/C39850000056 .

36 J.-M. Lehn and R. Ziessel, J. Organomet. Chem., 1990, 382, 157.

42 A. Rosas-Hernández, H. Junge and M. Beller, ChemCatChem, 2015, 7, 3316. (complete)

46 J. Rohacova and O. Ishitani, Chem. Sci., 2016, 7, 6728. (ready, undrawable cat)

48 S. K. Lee, M. Kondo, M. Okamura, T. Enomoto, G. Nakamura and S. Masaoka, J. Am. Chem. Soc., 2018, 140, 16899. (ready)

49 Y. Hameed, G. K. Rao, J. S. Ovens, B. Gabidullin and D. Richeson, ChemSusChem, 2019, 12, 3453. (ready)

51 Y. Arikawa, I. Tabata, Y. Miura, H. Tajiri, Y. Seto, S. Horiuchi, E. Sakuda and K. Umakoshi, Chem. – Eur. J., 2020, 26, 5603. (complete)

Table2

52 D. Behar, T. Dhanasekaran, P. Neta, C. M. Hosten, D. Ejeh, P. Hambright and E. Fujita, J. Phys. Chem. A, 1998, 102, 2870.

55 Z. Guo, G. Chen, C. Cometto, B. Ma, H. Zhao, T. Groizard, L. Chen, H. Fan, W.-L. Man, S.-M. Yiu, K.-C. Lau, T.-C. Lau and M. Robert, Nat. Catal., 2019, 2, 801. (No access)

Table 3

57 H. Takeda, H. Koizumi, K. Okamoto and O. Ishitani, ChemComm, 2014, 50, 1491. (complete)

59 M. Stanbury, J.-D. Compain, M. Trejo, P. Smith, E. Gouré and S. Chardon-Noblat, Electrochim. Acta, 2017, 240, 288. (ready)

62 H. Takeda, H. Kamiyama, K. Okamoto, M. Irimajiri, T. Mizutani, K. Koike, A. Sekine and O. Ishitani, J. Am. Chem. Soc., 2018, 140, 17241. (ready)

58 P. L. Cheung, C. W. Machan, A. Y. S. Malkhasian, J. Agarwal and C. P. Kubiak, Inorg. Chem., 2016, 55, 3192. (ready)

46 J. Rohacova and O. Ishitani, Chem. Sci., 2016, 7, 6728. (ready, undrawable cat)

60 J.-X. Zhang, C.-Y. Hu, W. Wang, H. Wang and Z.-Y. Bian, Appl. Catal., A, 2016, 522, 145. (ready)

Table 4

63 L. Chen, Z. Guo, X.-G. Wei, C. Gallenkamp, J. Bonin, E. Anxolabéhère-Mallart, K.-C. Lau, T.-C. Lau and M. Robert, J. Am. Chem. Soc., 2015, 137, 10918.

65 T. Fogeron, P. Retailleau, L.-M. Chamoreau, Y. Li and M. Fontecave, Angew. Chem., Int. Ed., 2018, 57, 17033.

67 S. Sato and T. Morikawa, ChemPhotoChem, 2018, 2, 207.

69 K. Kamada, J. Jung, T. Wakabayashi, K. Sekizawa, S. Sato, T. Morikawa, S. Fukuzumi and S. Saito, J. Am. Chem. Soc., 2020, 142, 10261.

71 Y. Hameed, P. Berro, B. Gabidullin and D. Richeson, ChemComm, 2019, 55, 11041.

Table 5

76 S. Matsuoka, K. Yamamoto, C. Pac and S. Yanagida, Chem. Lett., 1991, 20, 2099.

22 S. Matsuoka, K. Yamamoto, T. Ogata, M. Kusaba, N. Nakashima, E. Fujita and S. Yanagida, J. Am. Chem. Soc., 1993, 115, 601.

80 T. Ogata, Y. Yamamoto, Y. Wada, K. Murakoshi, M. Kusaba, N. Nakashima, A. Ishida, S. Takamuku and S. Yanagida, J. Phys. Chem., 1995, 99, 11916.

81 D. J. Boston, C. Xu, D. W. Armstrong and F. M. MacDonnell, J. Am. Chem. Soc., 2013, 135, 16252.

85 S. E. Lee, A. Nasirian, Y. E. Kim, P. T. Fard, Y. Kim, B. Jeong, S.-J. Kim, J.-O. Baeg and J. Kim, J. Am. Chem. Soc., 2020, 142, 19142.

Table 6

90 Y. Tamaki, T. Morimoto, K. Koike and O. Ishitani, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 15673.

91 Y. Tamaki, K. Koike and O. Ishitani, Chem. Sci., 2015, 6, 7213.

92 Y. Tamaki and O. Ishitani, Faraday Discuss., 2017, 198, 319.

93 D. C. Fabry, H. Koizumi, D. Ghosh, Y. Yamazaki, H. Takeda, Y. Tamaki and O. Ishitani, Organometallics, 2020, 39, 1511.

Table 7

94 S. Sato, T. Morikawa, S. Saeki, T. Kajino and T. Motohiro, Angew. Chem., Int. Ed., 2010, 49, 5101.

95 T. M. Suzuki, H. Tanaka, T. Morikawa, M. Iwaki, S. Sato, S. Saeki, M. Inoue, T. Kajino and T. Motohiro, ChemComm, 2011, 47, 8673.

20 S. Sato, T. Arai, T. Morikawa, K. Uemura, T. M. Suzuki, H. Tanaka and T. Kajino, J. Am. Chem. Soc., 2011, 133, 15240.

97 T. Arai, S. Sato, T. Kajino and T. Morikawa, Energy Environ. Sci., 2013, 6, 1274.

21 K. Sekizawa, K. Maeda, K. Domen, K. Koike and O. Ishitani, J. Am. Chem. Soc., 2013, 135, 4596.

98 F. Yoshitomi, K. Sekizawa, K. Maeda and O. Ishitani, ACS Appl. Mater. Interfaces, 2015, 7, 13092.

102 R. Kuriki, T. Ichibha, K. Hongo, D. Lu, R. Maezono, H. Kageyama, O. Ishitani, K. Oka and K. Maeda, J. Am. Chem. Soc., 2018, 140, 6648.

101 A. Nakada, R. Kuriki, K. Sekizawa, S. Nishioka, J. J. M. Vequizo, T. Uchiyama, N. Kawakami, D. Lu, A. Yamakata, Y. Uchimoto, O. Ishitani and K. Maeda, ACS Catal., 2018, 8, 9744.

103 T. Oshima, T. Ichibha, K. S. Qin, K. Muraoka, J. J. M. Vequizo, K. Hibino, R. Kuriki, S. Yamashita, K. Hongo, T. Uchiyama, K. Fujii, D. Lu, R. Maezono, A. Yamakata, H. Kato, K. Kimoto, M. Yashima, Y. Uchimoto, M. Kakihana, O. Ishitani, H. Kageyama and K. Maeda, Angew. Chem., Int. Ed., 2018, 57, 8154.

100 K. Muraoka, H. Kumagai, M. Eguchi, O. Ishitani and K. Maeda, ChemComm, 2016, 52, 7886.

107 K. Muraoka, T. Uchiyama, D. Lu, Y. Uchimoto, O. Ishitani and K. Maeda, Bull. Chem. Soc. Jpn., 2019, 92, 124.

106 K. Muraoka, M. Eguchi, O. Ishitani, F. Cheviré and K. Maeda, J. Energy Chem., 2021, 55, 176.

Table 8

109 K. Maeda, K. Sekizawa and O. Ishitani, ChemComm, 2013, 49, 10127.

111 R. Kuriki, K. Sekizawa, O. Ishitani and K. Maeda, Angew. Chem., Int. Ed., 2015, 54, 2406.

112 R. Kuriki, H. Matsunaga, T. Nakashima, K. Wada, A. Yamakata, O. Ishitani and K. Maeda, J. Am. Chem. Soc., 2016, 138, 5159.

113 R. Kuriki, M. Yamamoto, K. Higuchi, Y. Yamamoto, M. Akatsuka, D. Lu, S. Yagi, T. Yoshida, O. Ishitani and K. Maeda, Angew. Chem., Int. Ed., 2017, 56, 4867.

116 K. Maeda, D. An, R. Kuriki, D. Lu and O. Ishitani, Beilstein J. Org. Chem., 2018, 14, 1806.

Literature

[Pro21] Photochemical reduction of carbon dioxide to formic acid. Robin Cauwenbergh, Shoubhik Das, Green Chemistry 2021, Vol. 23, Pages 2553-2574. DOI2: 10.1039/d0gc04040a