Visible-Light-Driven Conversion of CO2 to CH4 with an Organic Sensitizer and an Iron Porphyrin Catalyst

From ChemWiki
Revision as of 16:44, 4 January 2024 by 127.0.0.1 (talk) (auto-generated)

publication
About
DOI 10.1021/jacs.8b09740
Authors Heng Rao, Chern-Hooi Lim, Julien Bonin, Garret M. Miyake, Marc Robert,
Submitted 07.12.2018
Published online 07.12.2018
Licenses -
Subjects Colloid and Surface Chemistry, Biochemistry, General Chemistry, Catalysis
Go to literature page


Abstract

Summary

A photochemical reduction of CO2 to CO and CH4 was shown using the iron porphyrin catalyst Fe(pTMAPP)Cl5 in combination with the phenoxazine photosensitizers 5,10-Di(2-naphthyl)-5,10-dihydrophenazine and 3,7-Di((1,1'-biphenyl)-4-yl)-10-(naphthalen-1-yl)-10H-phenoxazine. Turnover numbers (TONs) up to 149 for CO and 29 for CH4 were reached. The experiments were conducted under visible-light irradiation (λ > 435 nm) with a tertiary amine (see section SEDs below) as sacrificial electron donor.

Advances and special progress

The first demonstration for the reduction of CO2 to CH4 (complete 8e/8H+ reduction) by a combination of an earth-abundant metal catalyst and an organic dye. So far, similar systems were shown to induce 2e/2H+ reduction of CO2 to CO or formic acid.

Additional remarks

Methane was produced continuously (even after irradiation up to 4 days). The 8e/8H+ reduction efficiency strongly depends on the redox properties of the organic photosensitizer and acidity of the proton source. In additional experiments, CO was used as the gas resource. The system consisting of iron porphyrin catalyst Fe(pTMAPP)Cl5 in combination with the phenoxazine photosensitizer 3,7-Di((1,1'-biphenyl)-4-yl)-10-(naphthalen-1-yl)-10H-phenoxazine was able to produce CH4 with a TON of 80 (85% selectivity, quantum yield: 0.47%).

Content of the published article in detail

The article contains results for the reduction of CO2 and CO as feedstock gases. The catalytic system performs best (referring to the TON of CH4 production) for CO as a feedstock.

Catalysts

Fe(pTMAPP)Cl5

Photosensitizers

5,10-Di(2-naphthyl)-5,10-dihydrophenazine 3,7-Di((1,1'-biphenyl)-4-yl)-10-(naphthalen-1-yl)-10H-phenoxazine

Investigations

Investigation-Name: Table 1

Sacrificial Electron Donor

In this study, the experiments were done with the sacrificial electron donors DIPEA (DIPEA), TEOA (TEOA), BIH (BIH), and TEA (Molecule with key CKPHTUFEGVEMOQ-UHFFFAOYSA-N does not exist.).

Additives

In this study, different additives were used. As depicted in the investigation table, water (H2O,) phenol (PhOH), and trifluoroethanol (TFE) were used.

Investigations