Visible-Light-Driven Conversion of CO2 to CH4 with an Organic Sensitizer and an Iron Porphyrin Catalyst: Difference between revisions

From ChemWiki
publication
About
DOI 10.1021/jacs.8b09740
Authors Heng Rao, Chern-Hooi Lim, Julien Bonin, Garret M. Miyake, Marc Robert,
Submitted 07.12.2018
Published online 07.12.2018
Licenses -
Subjects Colloid and Surface Chemistry, Biochemistry, General Chemistry, Catalysis
Go to literature page
(wording)
No edit summary
 
Line 11: Line 11:


==== Additional remarks ====
==== Additional remarks ====
Methane was produced continuously (even after irradiation up to 4 days). The 8e''<sup>–</sup>''/8H<sup>+</sup> reduction efficiency strongly depends on the redox properties of the organic photosensitizer and acidity of the proton source. In additional experiments, CO was used as the gas resource. The system consisting of  iron porphyrin catalyst {{#moleculelink:|link=LKNRTBVZMCBYCY-NGWNFTKISA-I|image=false|width=300|height=200}} in combination with the phenoxazine photosensitizer {{#moleculelink:|link=IGGSSEOAGCUGDJ-UHFFFAOYSA-N|image=false|width=300|height=200}} was able to produce CH<sub>4</sub> with a TON of 80 (85% selectivity, quantum yield: 0.47%).  
Methane was produced continuously (even after irradiation up to 4 days). The 8e''<sup>–</sup>''/8H<sup>+</sup> reduction efficiency strongly depends on the redox properties of the organic photosensitizer and acidity of the proton source. In additional experiments, CO was used as the gas resource. The system consisting of  iron porphyrin catalyst {{#moleculelink:|link=LKNRTBVZMCBYCY-NGWNFTKISA-I|image=false|width=300|height=200}} in combination with the phenoxazine photosensitizer {{#moleculelink:|link=IGGSSEOAGCUGDJ-UHFFFAOYSA-N|image=false|width=300|height=200}} was able to produce CH<sub>4</sub> with a TON of 80 (85% selectivity, quantum yield: 0.47%).  


=== Content of the published article in detail ===
=== Content of the published article in detail ===

Latest revision as of 14:33, 16 August 2024


Abstract[edit | edit source]

Summary[edit | edit source]

A photochemical reduction of CO2 to CO and CH4 was shown using the iron porphyrin catalyst Fe(pTMAPP)Cl5 in combination with the phenoxazine photosensitizers 5,10-Di(2-naphthyl)-5,10-dihydrophenazine and 3,7-Di((1,1'-biphenyl)-4-yl)-10-(naphthalen-1-yl)-10H-phenoxazine. Turnover numbers (TONs) up to 149 for CO and 29 for CH4 were reached. The experiments were conducted under visible-light irradiation (λ > 435 nm) with a tertiary amine (see section SEDs below) as sacrificial electron donor.

Advances and special progress[edit | edit source]

This article contains the first demonstration for the reduction of CO2 to CH4 (complete 8e/8H+ reduction) by a combination of an earth-abundant metal catalyst and an organic dye. So far, similar systems were shown to induce 2e/2H+ reduction of CO2 to CO or formic acid.

Additional remarks[edit | edit source]

Methane was produced continuously (even after irradiation up to 4 days). The 8e/8H+ reduction efficiency strongly depends on the redox properties of the organic photosensitizer and acidity of the proton source. In additional experiments, CO was used as the gas resource. The system consisting of iron porphyrin catalyst Fe(pTMAPP)Cl5 in combination with the phenoxazine photosensitizer 3,7-Di((1,1'-biphenyl)-4-yl)-10-(naphthalen-1-yl)-10H-phenoxazine was able to produce CH4 with a TON of 80 (85% selectivity, quantum yield: 0.47%).

Content of the published article in detail[edit | edit source]

The article contains results for the reduction of CO2 and CO as feedstock gases. The catalytic system performs best (referring to the TON of CH4 production) for CO as a feedstock.

Catalysts[edit | edit source]

Fe(pTMAPP)Cl5

Photosensitizers[edit | edit source]

5,10-Di(2-naphthyl)-5,10-dihydrophenazine 3,7-Di((1,1'-biphenyl)-4-yl)-10-(naphthalen-1-yl)-10H-phenoxazine

Investigations[edit | edit source]

catcat conc [µM]PSPS conc [mM]e-De-D conc [M]solvent Aadditives..λexc [nm].TON COTON CH4TON H2.
1.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

TEA

0.1

DMF

> 4355088
2.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

TEA

0.1

DMF

TFE> 435711410
3.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

TEA

0.1

DMF

TFE> 4351402923
Investigation-Name: Photocatalytic reduction of CO2
catcat conc [µM]PSPS conc [mM]e-De-D conc [M]solvent Aadditives..λexc [nm].TON CH4TON H2.
1.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

TEA

0.1

DMF

Visible light (>435)1021
2.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

TEA

0.1

DMF

TFEVisible light (>435)457
3.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

TEOA

0.1

DMF

TFEVisible light (>435)219
4.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

DIPEA

0.1

DMF

TFEVisible light (>435)397
5.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

BIH

0.1

DMF

TFEVisible light (>435)468
6.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

TEA

0.1

DMF

TFEVisible light (>435)8014
7.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

TEA

0.1

DMF

TFEVisible light (>435)2717
8.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

TEA

0.1

DMF

TFEVisible light (>435)1737
9.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

TEA

0.1

DMF

waterVisible light (>435)105
10.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

TEA

0.1

DMF

waterVisible light (>435)126
11.

Fe(pTMAPP)Cl5

0.01

Molecule:100493

1

TEA

0.1

DMF

PhOHVisible light (>435)2644
Investigation-Name: Photocatalytic reduction of CO

Sacrificial Electron Donor[edit | edit source]

In this study, the experiments were done with the sacrificial electron donors DIPEA (DIPEA), TEOA (TEOA), BIH (BIH), and TEA (TEA).

Additives[edit | edit source]

In this study, different additives were used. As depicted in the investigation table, water (H2O,) phenol (PhOH), and trifluoroethanol (TFE) were used.

Investigations