Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction: Difference between revisions
About |
---|
No edit summary |
m (auto-generated) |
||
Line 3: | Line 3: | ||
===Abstract=== | ===Abstract=== | ||
==== Summary==== | ==== Summary==== | ||
A photochemical reduction of CO<sub>2</sub> to CO or formic acid was shown using the bipyridine-based rhenium, ruthenium and manganese catalysts {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}}, {{#moleculelink:|link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} or {{#moleculelink: |link= | A photochemical reduction of CO<sub>2</sub> to CO or formic acid was shown using the bipyridine-based rhenium, ruthenium and manganese catalysts {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}}, {{#moleculelink:|link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} or {{#moleculelink: |link=OMERWMHUIAGAOR-UHFFFAOYSA-N|image=false|width=300|height=200}} in combination with cyclic rhenium-based trinuclear redox photosensitizers. Turnover numbers (TONs) of up to 290 for formic acid were reached in DMA with the ruthenium complex {{#moleculelink:|link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} and photosensitizer {{#moleculelink:|link=KSOIVZAANOLODS-UHFFFAOYSA-T|image=false|width=300|height=200}}. For CO production, TONs of up to 98 were obtained in DMF with the rhenium complex {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}} and photosensitizer {{#moleculelink:|link=LOLRMPNEYKEGPF-UHFFFAOYSA-T|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ = 436 nm) using TEOA as sacrificial electron donor (see section SEDs below). | ||
====Advances and special progress==== | ====Advances and special progress==== | ||
Re(I)-based trinuclear photosensitizers were developed and allowed for high product selectivities for CO or formic acid in CO<sub>2</sub> reduction attempts with different bipyridine-based catalysts. | Re(I)-based trinuclear photosensitizers were developed and allowed for high product selectivities for CO or formic acid in CO<sub>2</sub> reduction attempts with different bipyridine-based catalysts. | ||
Line 150: | Line 150: | ||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
</chemform><chemform smiles="C(C(C)(C)C)1C=C2C3C=C(C(C)(C)C)C=CN=3[Mn+](C#O)(C#O)(C#O)(N#CC)N2=CC=1.F[P-](F)(F)(F)(F)F" inchi="1S/C18H24N2.C2H3N. | </chemform><chemform smiles="C(C(C)(C)C)1C=C2C3C=C(C(C)(C)C)C=CN=3[Mn+]([C-]#[O+])([C-]#[O+])([C-]#[O+])(N#CC)N2=CC=1.F[P-](F)(F)(F)(F)F" inchikey="OMERWMHUIAGAOR-UHFFFAOYSA-N" inchi="1S/C18H24N2.C2H3N.3CO.F6P.Mn/c1-17(2,3)13-7-9-19-15(11-13)16-12-14(8-10-20-16)18(4,5)6;1-2-3;3*1-2;1-7(2,3,4,5)6;/h7-12H,1-6H3;1H3;;;;;/q;;;;;-1;+1" float="none" width="200" height="200"> | ||
-INDIGO- | -INDIGO-02192415212D | ||
0 0 0 0 0 0 0 0 0 0 0 V3000 | 0 0 0 0 0 0 0 0 0 0 0 V3000 | ||
Line 157: | Line 157: | ||
M V30 COUNTS 37 38 0 0 0 | M V30 COUNTS 37 38 0 0 0 | ||
M V30 BEGIN ATOM | M V30 BEGIN ATOM | ||
M V30 1 | M V30 1 F 11.8253 -4.67831 0.0 0 | ||
M V30 2 | M V30 2 P 12.6827 -4.19071 0.0 0 CHG=-1 VAL=6 | ||
M V30 3 | M V30 3 F 12.6945 -5.18061 0.0 0 | ||
M V30 4 | M V30 4 F 13.5447 -4.67885 0.0 0 | ||
M V30 5 | M V30 5 F 12.6888 -3.2002 0.0 0 | ||
M V30 6 | M V30 6 F 13.541 -3.69224 0.0 0 | ||
M V30 7 | M V30 7 F 11.8296 -3.68535 0.0 0 | ||
M V30 8 C | M V30 8 C 5.27521 -4.13902 0.0 0 | ||
M V30 9 | M V30 9 C 6.98617 -4.13854 0.0 0 | ||
M V30 10 C 6. | M V30 10 C 6.13231 -3.64451 0.0 0 | ||
M V30 11 | M V30 11 N 6.98617 -5.12829 0.0 0 | ||
M V30 12 C 5. | M V30 12 C 5.27521 -5.13273 0.0 0 | ||
M V30 13 C | M V30 13 C 6.13447 -5.62221 0.0 0 | ||
M V30 14 C | M V30 14 C 6.13447 -6.61103 0.0 0 | ||
M V30 15 C | M V30 15 C 6.99136 -8.09195 0.0 0 | ||
M V30 16 | M V30 16 N 6.99162 -7.10547 0.0 0 | ||
M V30 17 C | M V30 17 C 6.13453 -8.5874 0.0 0 | ||
M V30 18 C | M V30 18 C 5.27422 -7.10846 0.0 0 | ||
M V30 19 C | M V30 19 C 5.28061 -8.09733 0.0 0 | ||
M V30 20 C 4. | M V30 20 C 4.41886 -3.64461 0.0 0 | ||
M V30 21 | M V30 21 C 3.56252 -3.1502 0.0 0 | ||
M V30 22 | M V30 22 C 4.42427 -8.59174 0.0 0 | ||
M V30 23 C | M V30 23 C 3.56792 -9.08615 0.0 0 | ||
M V30 24 | M V30 24 Mn 8.13836 -6.06687 0.0 0 CHG=1 | ||
M V30 25 | M V30 25 N 8.13836 -5.07805 0.0 0 | ||
M V30 26 C | M V30 26 C 8.9947 -5.57246 0.0 0 CHG=-1 | ||
M V30 27 C | M V30 27 C 8.9947 -6.56128 0.0 0 CHG=-1 | ||
M V30 28 | M V30 28 C 8.39429 -7.02199 0.0 0 CHG=-1 | ||
M V30 29 | M V30 29 C 8.13836 -4.08923 0.0 0 | ||
M V30 30 | M V30 30 C 8.13836 -3.10041 0.0 0 | ||
M V30 31 | M V30 31 O 9.85105 -5.07805 0.0 0 CHG=1 | ||
M V30 32 | M V30 32 O 9.85105 -7.05569 0.0 0 CHG=1 | ||
M V30 33 | M V30 33 O 8.65021 -7.97712 0.0 0 CHG=1 | ||
M V30 34 | M V30 34 C 4.41886 -2.64461 0.0 0 | ||
M V30 35 | M V30 35 C 3.55284 -4.14461 0.0 0 | ||
M V30 36 | M V30 36 C 4.42427 -9.59174 0.0 0 | ||
M V30 37 | M V30 37 C 3.55825 -8.09174 0.0 0 | ||
M V30 END ATOM | M V30 END ATOM | ||
M V30 BEGIN BOND | M V30 BEGIN BOND | ||
M V30 1 2 | M V30 1 1 1 2 | ||
M V30 2 2 | M V30 2 1 2 3 | ||
M V30 3 1 | M V30 3 1 2 4 | ||
M V30 4 1 2 | M V30 4 1 2 5 | ||
M V30 5 2 | M V30 5 1 2 6 | ||
M V30 6 1 | M V30 6 1 2 7 | ||
M V30 7 | M V30 7 2 10 8 | ||
M V30 8 2 9 | M V30 8 2 11 9 | ||
M V30 9 | M V30 9 1 8 12 | ||
M V30 10 1 | M V30 10 1 9 10 | ||
M V30 11 | M V30 11 2 12 13 | ||
M V30 12 | M V30 12 1 13 11 | ||
M V30 13 1 | M V30 13 1 13 14 | ||
M V30 14 | M V30 14 2 16 14 | ||
M V30 15 | M V30 15 2 17 15 | ||
M V30 16 1 | M V30 16 1 14 18 | ||
M V30 17 1 | M V30 17 1 15 16 | ||
M V30 18 | M V30 18 2 18 19 | ||
M V30 19 1 17 | M V30 19 1 19 17 | ||
M V30 20 1 | M V30 20 1 8 20 | ||
M V30 21 1 | M V30 21 1 20 21 | ||
M V30 22 | M V30 22 1 19 22 | ||
M V30 23 | M V30 23 1 22 23 | ||
M V30 24 10 | M V30 24 10 11 24 | ||
M V30 25 10 | M V30 25 10 16 24 | ||
M V30 26 10 | M V30 26 10 24 25 | ||
M V30 27 10 | M V30 27 10 24 26 | ||
M V30 28 | M V30 28 10 24 27 | ||
M V30 29 | M V30 29 10 24 28 | ||
M V30 30 3 | M V30 30 3 25 29 | ||
M V30 31 | M V30 31 1 29 30 | ||
M V30 32 3 | M V30 32 3 26 31 | ||
M V30 33 | M V30 33 3 27 32 | ||
M V30 34 | M V30 34 3 28 33 | ||
M V30 35 1 | M V30 35 1 20 34 | ||
M V30 36 1 | M V30 36 1 20 35 | ||
M V30 37 1 | M V30 37 1 22 36 | ||
M V30 38 1 | M V30 38 1 22 37 | ||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | M V30 END CTAB |
Revision as of 15:22, 19 February 2024
Faulty molecule |
A molecule on this page has a mistake in its structure or is missing a part. Please edit the structure or redraw a new molecule using the replace molecule workflow.
|
Missing investigation |
This page about a publication or dataset does not currently include an investigation. Please add any experiments detailed in the publication or performed to obtain this dataset.
|
Abstract
Summary
A photochemical reduction of CO2 to CO or formic acid was shown using the bipyridine-based rhenium, ruthenium and manganese catalysts [Re(bpy)(CO)3(MeCN)][PF6], Ru(dtBubpy)(CO)2Cl2 or [Mn(dtBubpy)(CO)3(MeCN)][PF6] in combination with cyclic rhenium-based trinuclear redox photosensitizers. Turnover numbers (TONs) of up to 290 for formic acid were reached in DMA with the ruthenium complex Ru(dtBubpy)(CO)2Cl2 and photosensitizer Molecule with key KSOIVZAANOLODS-UHFFFAOYSA-T does not exist.. For CO production, TONs of up to 98 were obtained in DMF with the rhenium complex [Re(bpy)(CO)3(MeCN)][PF6] and photosensitizer Molecule with key LOLRMPNEYKEGPF-UHFFFAOYSA-T does not exist.. The experiments were conducted under visible-light irradiation (λ = 436 nm) using TEOA as sacrificial electron donor (see section SEDs below).
Advances and special progress
Re(I)-based trinuclear photosensitizers were developed and allowed for high product selectivities for CO or formic acid in CO2 reduction attempts with different bipyridine-based catalysts.
Additional remarks
Content of the published article in detail
The article contains results for the reduction of CO2 to CO or formic acid under visible-light catalysis using bipyridine-based complexes and rhenium-based trinuclear rings as photosensitizers. The catalytic system performs best in DMA for formic acid production (referring to the TON of formic acid production) and in DMF for CO production.
Catalyst
[Re(bpy)(CO)3(MeCN)][PF6] Ru(dtBubpy)(CO)2Cl2 [Mn(dtBubpy)(CO)3(MeCN)][PF6]
Photosensitizer
Investigation
cat | cat conc [µM] | PS | PS conc [mM] | solvent A | . | . | λexc [nm] | . | TON CO | . | . | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.05 | 0.05 | 436 | 27 | |||||||||
2. | 0.05 | 0.05 | 436 | 98 | |||||||||
3. | 0.05 | 0.05 | 436 | 22 | |||||||||
4. | 0.05 | 0.05 | 436 | 71 | |||||||||
5. | 0.05 | 436 | 6 | ||||||||||
6. | 0.05 | 436 | 8 | ||||||||||
7. | 0.05 | 0.05 | 436 | 20 | |||||||||
8. | 0.05 | 0.05 | 436 | 32 | |||||||||
9. | 0.05 | 0.05 | 436 | 11 | |||||||||
10. | 0.05 | 0.05 | 436 | 48 |
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | . | . | λexc [nm] | . | TON CO | TON H2 | TON HCOOH | . | . | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.05 | 0.05 | 436 | 20 | 72 | 290 | |||||||||||
2. | 0.05 | 0.05 | 0.03 | 436 | 16 | 49 | 280 | ||||||||||
3. | 0.05 | 0.05 | 436 | 32 | 85 | ||||||||||||
4. | 0.05 | 0.05 | 0.03 | 436 | 80 | 60 |
Sacrificial Electron Donor
In this study, the experiments were done with the sacrificial electron donor TEOA (100507).
Additives
In this study, no additives were tested.