An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2: Difference between revisions

From ChemWiki
publication
About
DOI 10.1039/c9cc03943k
Authors Yasmeen Hameed, Patrick Berro, Bulat Gabidullin, Darrin Richeson,
Submitted 16.08.2019
Published online 2019
Licenses http://rsc.li/journals-terms-of-use,
Subjects Materials Chemistry, Metals and Alloys, Surfaces, Coatings and Films, General Chemistry, Ceramics and Composites, Electronic, Optical and Magnetic Materials, Catalysis
Go to literature page
Laura (talk | contribs)
No edit summary
Laura (talk | contribs)
No edit summary
Line 11: Line 11:


====Additional remarks====
====Additional remarks====
The complex {{#moleculelink:|link=SQEHJZNRDJMTCB-UHFFFAOYSA-M|image=false|width=300|height=200}} can act both as a photocatalyst and sensitizer, but its performance is considerably enhanced by the addition of {{#moleculelink:|link=KLDYQWXVZLHTKT-UHFFFAOYSA-N|image=false|width=300|height=200}} as supplemental photosensitizer.
The complex {{#moleculelink:|link=SQEHJZNRDJMTCB-UHFFFAOYSA-M|image=false|width=300|height=200}} can act both as a photocatalyst and sensitizer, but its performance is considerably enhanced by the addition of {{#moleculelink:|link=KLDYQWXVZLHTKT-UHFFFAOYSA-N|image=false|width=300|height=200}} as supplemental photosensitizer. The variation of the catalyst concentration also showed a drastic influence on the performance of the catalytic system.


=== Content of the published article in detail ===
=== Content of the published article in detail ===

Revision as of 13:03, 16 January 2024


Abstract

Summary

A photochemical reduction of CO2 to formic acid was shown using the rhenium catalyst and sensitizer [Re(bpy)2(CO)2][OTf] in combination with the supplemental photosensitizer [Ru(bpy)3][PF6]. Turnover numbers (TONs) up to 2750 for formic acid were reached in dimethylacetamide. The experiments were conducted under visible-light irradiation (λ = 405 nm) with TEOA (see section SEDs below) as sacrificial electron donor.

Advances and special progress

A unprecedented rhenium complex was used as an integrated photosensitizer/catalyst to generate formic acid from CO2; other rhenium catalysts only allow for the formation of CO as the reduction product.

Additional remarks

The complex [Re(bpy)2(CO)2][OTf] can act both as a photocatalyst and sensitizer, but its performance is considerably enhanced by the addition of [Ru(bpy)3][PF6] as supplemental photosensitizer. The variation of the catalyst concentration also showed a drastic influence on the performance of the catalytic system.

Content of the published article in detail

Catalyst

[Re(bpy)2(CO)2][OTf]

Photosensitizer

[Ru(bpy)3][PF6]

Investigation

Investigation-Name: Table 1

Sacrificial electron donor

In this study, the experiments were done with the sacrificial electron donor TEOA (100507).

Additives

No additives were tested in this study.

Investigations