Photocatalytic CO2 Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid: Difference between revisions

From ChemWiki
publication
About
DOI 10.1021/jacs.0c03097
Authors Kenji Kamada, Jieun Jung, Taku Wakabayashi, Keita Sekizawa, Shunsuke Sato, Takeshi Morikawa, Shunichi Fukuzumi, Susumu Saito,
Submitted 27.05.2020
Published online 26.05.2020
Licenses https://doi.org/10.15223/policy-029, https://doi.org/10.15223/policy-037, https://doi.org/10.15223/policy-045,
Subjects Colloid and Surface Chemistry, Biochemistry, General Chemistry, Catalysis
Go to literature page
No edit summary
m (auto-updated)
Line 214: Line 214:


====Investigation ====
====Investigation ====
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}}
{{#experimentlist: |form=Photocatalytic_CO2_conversion_experiments|name=Photocatalytic reduction of CO2, best TON}}
====Sacrificial Electron Donor====
====Sacrificial Electron Donor====
In this study, the experiments were done with the sacrificial electron donor BIH ({{#moleculelink:|link=VDFIVJSRRJXMAU-UHFFFAOYSA-N|image=false|width=300|height=200}}).
In this study, the experiments were done with the sacrificial electron donor BIH ({{#moleculelink:|link=VDFIVJSRRJXMAU-UHFFFAOYSA-N|image=false|width=300|height=200}}).

Revision as of 16:11, 13 February 2024


Abstract

Summary

A photochemical reduction of CO2 to formic acid and CO was shown using the iridium complex [Ir(mesbpy-(PCy2)2)][BPh4] as a catalyst without any additional photosensitizer. Turnover numbers (TONs) of 2080 and a selectivity of 87% for formic acid were reached in dimethylacetamide/water. The experiments were conducted under visible-light irradiation (λ > 400 nm) using BIH as sacrificial electron donor (see section SEDs below).

Advances and special progress

The authors have developed a multifunctional catalyst that allows for selective generation of formic acid without the need for an external photosensitizer.

Additional remarks

The developed catalyst reduces CO2 to CO via inner-sphere catalysis and to formic acid via outer-sphere catalysis.

Content of the published article in detail

The article contains results for the reduction of CO2 to CO and formic acid under visible-light catalysis using an iridium complex. The catalytic system performs best (referring to the TON of formic acid production) in dimethylacetamide/water.

Catalyst

[Ir(mesbpy-(PCy2)2)][BPh4]

Investigation

catcat conc [µM]e-De-D conc [M]solvent A..λexc [nm].TON COTON H2TON HCOOH.
1.

[Ir(mesbpy-(PCy2)2)][BPh4]

0.02

BIH

0.2

DMA

>400470152080

Sacrificial Electron Donor

In this study, the experiments were done with the sacrificial electron donor BIH (BIH).

Additives

In this study, additional control experiments were conducted with Hg.

Investigations