An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2: Difference between revisions
About |
---|
No edit summary |
No edit summary |
||
Line 111: | Line 111: | ||
<chemform smiles="" inchi="" inchikey="KLDYQWXVZLHTKT-UHFFFAOYSA-N" height="200px" width="300px" float="none"></chemform> | <chemform smiles="" inchi="" inchikey="KLDYQWXVZLHTKT-UHFFFAOYSA-N" height="200px" width="300px" float="none"></chemform> | ||
=== | ===Investigations=== | ||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}} | {{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Solvent effect study between DMA DMF and acetonitrile|importFile=}}{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}} | ||
====Sacrificial electron donor==== | ====Sacrificial electron donor==== | ||
In this study, the experiments were done with the sacrificial electron donor TEOA ([[Molecule:100507|100507]]). | In this study, the experiments were done with the sacrificial electron donor TEOA ([[Molecule:100507|100507]]). |
Revision as of 16:14, 23 January 2024
Abstract
Summary
A photochemical reduction of CO2 to formic acid was shown using the rhenium catalyst and sensitizer [Re(bpy)2(CO)2][OTf] in combination with the supplemental photosensitizer [Ru(bpy)3][PF6]. Turnover numbers (TONs) up to 2750 for formic acid were reached in dimethylacetamide. The experiments were conducted under visible-light irradiation (λ = 405 nm) with TEOA (see section SEDs below) as sacrificial electron donor.
Advances and special progress
A unprecedented rhenium complex was used as an integrated photosensitizer/catalyst to generate formic acid from CO2; other rhenium catalysts only allow for the formation of CO as the reduction product.
Additional remarks
The complex [Re(bpy)2(CO)2][OTf] can act both as a photocatalyst and sensitizer, but its performance is considerably enhanced by the addition of [Ru(bpy)3][PF6] as supplemental photosensitizer. The variation of the catalyst concentration also showed a drastic influence on the performance of the catalytic system.
Content of the published article in detail
The article contains results for the reduction of CO2 to formic acid under visible-light catalysis using a rhenium complex as a catalyst. The catalytic system performs best (referring to the TON of formic acid production) in dimethylacetamide.
Catalyst
Photosensitizer
Investigations
cat | cat conc [µM] | PS | PS conc [mM] | e-D | solvent A | . | . | λexc [nm] | . | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.8 | 405 nm | 1.75 | 12.5 | |||||||||
2. | 0.8 | 405 nm | 2 | 15 | |||||||||
3. | 0.8 | 405 nm | 1.5 | 2.5 | |||||||||
4. | 0.8 | 405 nm | 10.3 | ||||||||||
5. | 0.8 | 0.8 | 405 nm | 1.5 | 52 | ||||||||
6. | 0.8 | 405 nm | 0.8 | 10.8 | |||||||||
7. | 0.8 | 0.8 | 405 nm | 2.8 | 66 | ||||||||
8. | 0.8 | 0.8 | 405 nm | ||||||||||
9. | 0.8 | 0.8 | 405 nm | 2.8 | 11.5 |
Sacrificial electron donor
In this study, the experiments were done with the sacrificial electron donor TEOA (100507).
Additives
No additives were tested in this study.
Investigations
- Effect of proton donor (Molecular process, Photocatalytic CO2 conversion experiments)
- Solvent effect study between DMA DMF and acetonitrile (Molecular process, Photocatalytic CO2 conversion experiments)
- Study on the concentration of catalyst (Molecular process, Photocatalytic CO2 conversion experiments)
- Time profile in DMF (Molecular process, Photocatalytic CO2 conversion experiments)