Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction: Difference between revisions

From ChemWiki
publication
About
DOI 10.1039/c6sc01913g
Authors Jana Rohacova, Osamu Ishitani,
Submitted 05.07.2016
Published online 2016
Licenses -
Subjects -
Go to literature page
m auto-generated
m auto-generated
 
(2 intermediate revisions by 2 users not shown)
Line 82: Line 82:
M  V30 END CTAB
M  V30 END CTAB
M  END
M  END
</chemform><chemform smiles="CC(C)(C)C1=CC2=N(~[Ru](~Cl)(~Cl)(~C#O)(~C#O)~N3=C2C=C(C(C)(C)C)C=C3)C=C1" inchikey="XUQJAKJUMNDNTK-UHFFFAOYSA-L" inchi="InChI=1S/C18H24N2.2CO.2ClH.Ru/c1-17(2,3)13-7-9-19-15(11-13)16-12-14(8-10-20-16)18(4,5)6;2*1-2;;;/h7-12H,1-6H3;;;2*1H;/q;;;;;+2/p-2" float="none" width="200" height="200">
</chemform><chemform smiles="CC(C)(C)C1=CC2=N(~[Ru](~Cl)(~Cl)(~C#O)(~C#O)~N3=C2C=C(C(C)(C)C)C=C3)C=C1" inchikey="XUQJAKJUMNDNTK-UHFFFAOYSA-L" inchi="InChI=1S/C18H24N2.2CO.2ClH.Ru/c1-17(2,3)13-7-9-19-15(11-13)16-12-14(8-10-20-16)18(4,5)6;2*1-2;;;/h7-12H,1-6H3;;;2*1H;/q;;;;;+2/p-2" float="none" width="200" height="200" margin="0px 0px 0px 30px">
     RDKit          2D
     RDKit          2D


Line 150: Line 150:
M  V30 END CTAB
M  V30 END CTAB
M  END
M  END
</chemform><chemform smiles="C(C(C)(C)C)1C=C2C3C=C(C(C)(C)C)C=CN=3[Mn+]([C-]#[O+])([C-]#[O+])([C-]#[O+])(N#CC)N2=CC=1.F[P-](F)(F)(F)(F)F" inchikey="OMERWMHUIAGAOR-UHFFFAOYSA-N" inchi="1S/C18H24N2.C2H3N.3CO.F6P.Mn/c1-17(2,3)13-7-9-19-15(11-13)16-12-14(8-10-20-16)18(4,5)6;1-2-3;3*1-2;1-7(2,3,4,5)6;/h7-12H,1-6H3;1H3;;;;;/q;;;;;-1;+1" float="none" width="200" height="200">
</chemform><chemform smiles="C(C(C)(C)C)1C=C2C3C=C(C(C)(C)C)C=CN=3[Mn+]([C-]#[O+])([C-]#[O+])([C-]#[O+])(N#CC)N2=CC=1.F[P-](F)(F)(F)(F)F" inchikey="OMERWMHUIAGAOR-UHFFFAOYSA-N" inchi="1S/C18H24N2.C2H3N.3CO.F6P.Mn/c1-17(2,3)13-7-9-19-15(11-13)16-12-14(8-10-20-16)18(4,5)6;1-2-3;3*1-2;1-7(2,3,4,5)6;/h7-12H,1-6H3;1H3;;;;;/q;;;;;-1;+1" float="none" width="200" height="200" margin="0px 0px 0px 30px">
   -INDIGO-02192415212D
   -INDIGO-02192415212D


Line 636: Line 636:


====Investigation====
====Investigation====
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}}{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 2}}
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}}
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 2}}
====Sacrificial Electron Donor ====
====Sacrificial Electron Donor ====
In this study, the experiments were done with the sacrificial electron donor TEOA ([[Molecule:100507|100507]]).
In this study, the experiments were done with the sacrificial electron donor TEOA ([[Molecule:100507|100507]]).
Line 642: Line 643:
In this study, no additives were tested.
In this study, no additives were tested.
[[Category:Photocatalytic CO2 conversion to HCOOH]][[Category:Publication]]
[[Category:Photocatalytic CO2 conversion to HCOOH]][[Category:Publication]]
{{Tags|tags=CO2 reduction, photochemical reduction, photocatalysis, visible-light catalysis, homogeneous catalysis, organometallic chemistry, rhenium catalyst, ruthenium catalyst, manganese catalyst, bipyridine complexes, trinuclear photosensitizer, rhenium photosensitizer, formic acid production, carbon monoxide production, solar fuels, sacrificial electron donor, TEOA, turnover number}}

Latest revision as of 11:44, 21 November 2025


Abstract[edit | edit source]

Summary[edit | edit source]

A photochemical reduction of CO2 to CO or formic acid was shown using the bipyridine-based rhenium, ruthenium and manganese catalysts [Re(bpy)(CO)3(MeCN)][PF6], Ru(dtBubpy)(CO)2Cl2 or [Mn(dtBubpy)(CO)3(MeCN)][PF6] in combination with cyclic rhenium-based trinuclear redox photosensitizers. Turnover numbers (TONs) of up to 290 for formic acid were reached in DMA with the ruthenium complex Ru(dtBubpy)(CO)2Cl2 and photosensitizer 100877. For CO production, TONs of up to 98 were obtained in DMF with the rhenium complex [Re(bpy)(CO)3(MeCN)][PF6] and photosensitizer 100878. The experiments were conducted under visible-light irradiation (λ = 436 nm) using TEOA as sacrificial electron donor (see section SEDs below).

Advances and special progress[edit | edit source]

Re(I)-based trinuclear photosensitizers were developed and allowed for high product selectivities for CO or formic acid in CO2 reduction attempts with different bipyridine-based catalysts.

Additional remarks[edit | edit source]

Content of the published article in detail[edit | edit source]

The article contains results for the reduction of CO2 to CO or formic acid under visible-light catalysis using bipyridine-based complexes and rhenium-based trinuclear rings as photosensitizers. The catalytic system performs best in DMA for formic acid production (referring to the TON of formic acid production) and in DMF for CO production.

Catalyst[edit | edit source]

[Re(bpy)(CO)3(MeCN)][PF6] Ru(dtBubpy)(CO)2Cl2 [Mn(dtBubpy)(CO)3(MeCN)][PF6]

Photosensitizer[edit | edit source]

100730 [Show R-Groups]

Investigation[edit | edit source]

catcat conc [µM]PSPS conc [mM]e-De-D conc [M]solvent A..λexc [nm].TON COTON H2TON HCOOH...
1.

Ru(dtBubpy)(CO)2Cl2

50

Molecule:100877

0.05


DMF

4362072290
2.

Ru(dtBubpy)(CO)2Cl2

50

Molecule:100877

0.05

BI(OH)H

0.03

DMF

4361649280
3.

[Mn(dtBubpy)(CO)3(MeCN)][PF6]

50

Molecule:100877

0.05


DMF

4363285
4.

[Mn(dtBubpy)(CO)3(MeCN)][PF6]

50

Molecule:100877

0.05

BI(OH)H

0.03

DMF

4368060
Investigation-Name: Table 2

Sacrificial Electron Donor[edit | edit source]

In this study, the experiments were done with the sacrificial electron donor TEOA (100507).

Additives[edit | edit source]

In this study, no additives were tested.

Tags: CO2 reduction, photochemical reduction, photocatalysis, visible-light catalysis, homogeneous catalysis, organometallic chemistry, rhenium catalyst, ruthenium catalyst, manganese catalyst, bipyridine complexes, trinuclear photosensitizer, rhenium photosensitizer, formic acid production, carbon monoxide production, solar fuels, sacrificial electron donor, TEOA, turnover number

Investigations

  • Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)
  • Table 2 (Molecular process, Photocatalytic CO2 conversion experiments)