Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction: Difference between revisions

From ChemWiki
publication
About
DOI 10.1039/c6sc01913g
Authors Jana Rohacova, Osamu Ishitani,
Submitted 05.07.2016
Published online 2016
Licenses -
Subjects -
Go to literature page
m (auto-generated)
m (auto-generated)
 
Line 3: Line 3:
===Abstract===
===Abstract===
==== Summary====
==== Summary====
A photochemical reduction of CO<sub>2</sub> to CO or formic acid was shown using the bipyridine-based rhenium, ruthenium and manganese catalysts {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}}, {{#moleculelink: |link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} or {{#moleculelink: |link=OMERWMHUIAGAOR-UHFFFAOYSA-N|image=false|width=300|height=200}} in combination with cyclic rhenium-based trinuclear redox photosensitizers. Turnover numbers (TONs) of  up to 290 for formic acid were reached in DMA with the ruthenium complex {{#moleculelink: |link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} and photosensitizer {{#moleculelink: |link=JLRZSCLFGATQEH-UHFFFAOYSA-T|image=false|width=300|height=200}}. For CO production, TONs of up to 98 were obtained in DMF with the rhenium complex {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}} and photosensitizer {{#moleculelink:|link=LKSLWZSWOWNWCR-UHFFFAOYSA-T|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ = 436 nm) using TEOA as sacrificial electron donor (see section SEDs below).
A photochemical reduction of CO<sub>2</sub> to CO or formic acid was shown using the bipyridine-based rhenium, ruthenium and manganese catalysts {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}}, {{#moleculelink: |link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} or {{#moleculelink: |link=OMERWMHUIAGAOR-UHFFFAOYSA-N|image=false|width=300|height=200}} in combination with cyclic rhenium-based trinuclear redox photosensitizers. Turnover numbers (TONs) of  up to 290 for formic acid were reached in DMA with the ruthenium complex {{#moleculelink: |link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} and photosensitizer {{#moleculelink: |link=JLRZSCLFGATQEH-UHFFFAOYSA-T|image=false|width=300|height=200}}. For CO production, TONs of up to 98 were obtained in DMF with the rhenium complex {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}} and photosensitizer {{#moleculelink: |link=LKSLWZSWOWNWCR-UHFFFAOYSA-T|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ = 436 nm) using TEOA as sacrificial electron donor (see section SEDs below).
====Advances and special progress====
====Advances and special progress====
Re(I)-based trinuclear photosensitizers were developed and allowed for high product selectivities for CO or formic acid in CO<sub>2</sub> reduction attempts with different bipyridine-based catalysts.
Re(I)-based trinuclear photosensitizers were developed and allowed for high product selectivities for CO or formic acid in CO<sub>2</sub> reduction attempts with different bipyridine-based catalysts.

Latest revision as of 13:46, 3 May 2024


Abstract[edit | edit source]

Summary[edit | edit source]

A photochemical reduction of CO2 to CO or formic acid was shown using the bipyridine-based rhenium, ruthenium and manganese catalysts [Re(bpy)(CO)3(MeCN)][PF6], Ru(dtBubpy)(CO)2Cl2 or [Mn(dtBubpy)(CO)3(MeCN)][PF6] in combination with cyclic rhenium-based trinuclear redox photosensitizers. Turnover numbers (TONs) of up to 290 for formic acid were reached in DMA with the ruthenium complex Ru(dtBubpy)(CO)2Cl2 and photosensitizer 100877. For CO production, TONs of up to 98 were obtained in DMF with the rhenium complex [Re(bpy)(CO)3(MeCN)][PF6] and photosensitizer 100878. The experiments were conducted under visible-light irradiation (λ = 436 nm) using TEOA as sacrificial electron donor (see section SEDs below).

Advances and special progress[edit | edit source]

Re(I)-based trinuclear photosensitizers were developed and allowed for high product selectivities for CO or formic acid in CO2 reduction attempts with different bipyridine-based catalysts.

Additional remarks[edit | edit source]

Content of the published article in detail[edit | edit source]

The article contains results for the reduction of CO2 to CO or formic acid under visible-light catalysis using bipyridine-based complexes and rhenium-based trinuclear rings as photosensitizers. The catalytic system performs best in DMA for formic acid production (referring to the TON of formic acid production) and in DMF for CO production.

Catalyst[edit | edit source]

[Re(bpy)(CO)3(MeCN)][PF6] Ru(dtBubpy)(CO)2Cl2 [Mn(dtBubpy)(CO)3(MeCN)][PF6]

Photosensitizer[edit | edit source]

100730 [Show R-Groups]

Investigation[edit | edit source]

Investigation-Name: Table 1
catcat conc [µM]PSPS conc [mM]e-De-D conc [M]solvent A..λexc [nm].TON COTON H2TON HCOOH...
1.

Ru(dtBubpy)(CO)2Cl2

0.05

Molecule:100877

0.05


DMF

4362072290
2.

Ru(dtBubpy)(CO)2Cl2

0.05

Molecule:100877

0.05

BI(OH)H

0.03

DMF

4361649280
3.

[Mn(dtBubpy)(CO)3(MeCN)][PF6]

0.05

Molecule:100877

0.05


DMF

4363285
4.

[Mn(dtBubpy)(CO)3(MeCN)][PF6]

0.05

Molecule:100877

0.05

BI(OH)H

0.03

DMF

4368060
Investigation-Name: Table 2

Sacrificial Electron Donor[edit | edit source]

In this study, the experiments were done with the sacrificial electron donor TEOA (100507).

Additives[edit | edit source]

In this study, no additives were tested.

Investigations

  • Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)
  • Table 2 (Molecular process, Photocatalytic CO2 conversion experiments)