Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light: Difference between revisions

From ChemWiki
publication
About
DOI 10.1002/cctc.201500494
Authors Alonso Rosas-Hernández, Henrik Junge, Matthias Beller,
Submitted 26.08.2015
Published online 26.08.2015
Licenses http://doi.wiley.com/10.1002/tdm_license_1.1,
Subjects Inorganic Chemistry, Organic Chemistry, Physical and Theoretical Chemistry, Catalysis
Go to literature page
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{BaseTemplate}}
{{BaseTemplate}}
[[Category:Photocatalytic CO2 conversion to HCOOH]]
[[Category:Photocatalytic CO2 conversion to HCOOH]]
{{#doiinfobox: 10.1002/cctc.201500494 }}
{{DOI|doi=10.1002/cctc.201500494 }}
=== Abstract ===
=== Abstract ===


Line 661: Line 661:


==== Investigations ====
==== Investigations ====
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}}
{{#experimentlist: |form=Photocatalytic_CO2_conversion_experiments|name=CO2 reduction experiments}}


{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 2}}
{{#experimentlist: |form=Photocatalytic_CO2_conversion_experiments|name=Optimization of concentrations}}


{{#experimentlist:|form=Cyclic_Voltammetry_experiments|name=Table 3 - CV}}
{{#experimentlist:|form=Cyclic_Voltammetry_experiments|name=Table 3 - CV}}
Line 671: Line 671:


==== Additives ====
==== Additives ====
No additives were used in the described experiments.
No additives were used in the described experiments.[[Category:Publication]]

Latest revision as of 15:15, 5 July 2024


Abstract[edit | edit source]

Summary[edit | edit source]

A photochemical reduction of CO2 to formic acid was shown using a system containing an iridium-based photosensitizer, ruthenium photocatalyst and triethanolamine as the electron donor. Turnover numbers up to 526 and a selectivity of 80% towards formic acid were observed if the reaction was performed with [Ir(ppy)2(bpy)]PF6 ([Ir(ppy)2(bpy)][PF6]) as the photosensitizer and [Ru(bpy)2(Cl)(CO)]PF6 (100837) as the catalyst. The experiments were conducted under irradiation with Hg-lamp equipped with a λ=400–700 nm filter.

Advances and special progress[edit | edit source]

The employed photocatalytic system showed activity for the photoreduction of Na2CO3 to formic acid as well. A TON of 53 was observed after 5h reaction time.

Additional remarks[edit | edit source]

Experiments using different electron and proton donors such as triethylamine (TEA) and 1-benzyl-1,4-dihydronicotinamide (BNAH) were unsuccessful as the observed activities were lower than those obtained in the presence of TEOA.

Content of the published article in detail[edit | edit source]

The article contains results for the reduction of CO2 to formic under visible-light catalysis using ruthenium complexes as catalysts, the iridium complex [Ir(ppy)2(bpy)]PF6 ([Ir(ppy)2(bpy)][PF6]) as a photosensitizer and triethanolamine as the electron donor. The catalytic system performs best (referring to the TON of HCOOH production) with [Ru(bpy)2(Cl)(CO)]PF6 (100837) as photocatalyst.

Catalysts[edit | edit source]

Ru(bpy)2Cl2 Ru(bpy)2CO3 [Ru(bpy)2ClCO][PF6] [Ru(bpy)(H2O)(CO)][PF6] [Ru(bpy)(AcMe)2][PF6] [Ru(bpy)2HCO][PF6]

Photosensitizer[edit | edit source]

[Ir(ppy)2(bpy)][PF6]

Investigations[edit | edit source]

catcat conc [µM]PSPS conc [mM]e-Dsolvent A.λexc [nm]TON COTON H2TON HCOOH.
1.

Ru(bpy)2Cl2

25

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7001213
2.

Ru(bpy)2CO3

25

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7002421
3.

[Ru(bpy)2ClCO][PF6]

25

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 70013862
4.

[Ru(bpy)2HCO][PF6]

25

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7008834
5.

[Ru(bpy)(H2O)(CO)][PF6]

25

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7007940
6.

[Ru(bpy)(AcMe)2][PF6]

25

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7003427
Investigation-Name: CO2 reduction experiments
catcat conc [µM]PSPS conc [mM]e-Dsolvent A.λexc [nm]TON COTON H2TON HCOOH.
1.

Ru(bpy)2Cl2

6.2

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7003926
2.

Ru(bpy)2CO3

6.2

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 70031139
3.

[Ru(bpy)2ClCO][PF6]

6.2

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7001919117
4.

[Ru(bpy)2HCO][PF6]

6.2

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7002116107
5.

[Ru(bpy)(H2O)(CO)][PF6]

6.2

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 700211475
6.

[Ru(bpy)(AcMe)2][PF6]

6.2

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 70041264
7.

[Ru(bpy)2ClCO][PF6]

3.1

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7003633296
8.

[Ru(bpy)2HCO][PF6]

3.1

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7001629145
9.

[Ru(bpy)(H2O)(CO)][PF6]

3.1

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7003428211
10.

[Ru(bpy)2ClCO][PF6]

1.6

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7004067419
11.

[Ru(bpy)2HCO][PF6]

1.6

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7002562225
12.

[Ru(bpy)(H2O)(CO)][PF6]

1.6

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 7004565335
13.

[Ru(bpy)(AcMe)2][PF6]

1.6

[Ir(ppy)2(bpy)][PF6]

0.025

TEOA

NMP

400 - 70044475
Investigation-Name: Optimization of concentrations
analytereduction potentialsolventelectrolyte..WE..RE.
1.

Ru(bpy)2Cl2

0,-2.11

MeCN

TBABF4

glassy carbonAg/AgNO3 in MeCN
2.

Ru(bpy)2CO3

0.45,-1.97

MeCN

TBABF4

glassy carbonAg/AgNO3 in MeCN
3.

[Ru(bpy)2ClCO][PF6]

1.22,-1.75

MeCN

TBABF4

glassy carbonAg/AgNO3 in MeCN
4.

[Ru(bpy)2HCO][PF6]

1.20,-1.61

MeCN

TBABF4

glassy carbonAg/AgNO3 in MeCN
Investigation-Name: Table 3 - CV

Sacrificial electron donor[edit | edit source]

In this study, the experiments were done with the sacrificial electron donor TEOA (100507).

Additives[edit | edit source]

No additives were used in the described experiments.

Investigations