Photochemical Reduction of Carbon Dioxide to Formic Acid using Ruthenium(II)-Based Catalysts and Visible Light: Difference between revisions
About |
---|
m (auto-generated) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{BaseTemplate}} | {{BaseTemplate}} | ||
[[Category:Photocatalytic CO2 conversion to HCOOH]] | [[Category:Photocatalytic CO2 conversion to HCOOH]] | ||
{{ | {{DOI|doi=10.1002/cctc.201500494 }} | ||
=== Abstract === | === Abstract === | ||
Line 354: | Line 353: | ||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
</chemform><chemform smiles=" | </chemform><chemform smiles="C1C=CN2[Ru+2](O=C(C)C)(O=C(C)C)3(N4C=CC=CC=4C4C=CC=CN=43)N3=CC=CC=C3C=2C=1.F[P-](F)(F)(F)(F)F.F[P-](F)(F)(F)(F)F" inchi="1S/2C10H8N2.2C3H6O.2F6P.Ru/c2*1-3-7-11-9(5-1)10-6-2-4-8-12-10;2*1-3(2)4;2*1-7(2,3,4,5)6;/h2*1-8H;2*1-2H3;;;/q;;;;2*-1;+2" inchikey="MVHJANUNBKMKDC-UHFFFAOYSA-N" height="200px" width="300px" float="none"> | ||
-INDIGO- | -INDIGO-02262411282D | ||
0 0 0 0 0 0 0 0 0 0 0 V3000 | 0 0 0 0 0 0 0 0 0 0 0 V3000 | ||
Line 361: | Line 360: | ||
M V30 COUNTS 47 50 0 0 0 | M V30 COUNTS 47 50 0 0 0 | ||
M V30 BEGIN ATOM | M V30 BEGIN ATOM | ||
M V30 1 F 12. | M V30 1 F 12.1174 -3.75053 0.0 0 | ||
M V30 2 P | M V30 2 P 12.9691 -3.25877 0.0 0 CHG=-1 | ||
M V30 3 F | M V30 3 F 13.8209 -3.75053 0.0 0 | ||
M V30 4 F | M V30 4 F 12.9691 -2.27524 0.0 0 | ||
M V30 5 F 12. | M V30 5 F 12.1174 -2.76701 0.0 0 | ||
M V30 6 F | M V30 6 F 13.8209 -2.76701 0.0 0 | ||
M V30 7 F | M V30 7 F 12.9691 -4.2423 0.0 0 | ||
M V30 8 F 12. | M V30 8 F 12.0523 -6.85 0.0 0 | ||
M V30 9 P | M V30 9 P 12.9182 -6.35 0.0 0 CHG=-1 | ||
M V30 10 F | M V30 10 F 13.7843 -6.85 0.0 0 | ||
M V30 11 F | M V30 11 F 12.9182 -5.34999 0.0 0 | ||
M V30 12 F 12. | M V30 12 F 12.0523 -5.85 0.0 0 | ||
M V30 13 F | M V30 13 F 13.7843 -5.85 0.0 0 | ||
M V30 14 F | M V30 14 F 12.9182 -7.35001 0.0 0 | ||
M V30 15 C 4. | M V30 15 C 4.96571 -3.48512 0.0 0 | ||
M V30 16 C 6. | M V30 16 C 6.43719 -3.48472 0.0 0 | ||
M V30 17 C 5. | M V30 17 C 5.70285 -3.05983 0.0 0 | ||
M V30 18 N 6. | M V30 18 N 6.43719 -4.33594 0.0 0 | ||
M V30 19 C 4. | M V30 19 C 4.96571 -4.33976 0.0 0 | ||
M V30 20 C 5. | M V30 20 C 5.7047 -4.76073 0.0 0 | ||
M V30 21 C | M V30 21 C 7.17388 -3.05985 0.0 0 | ||
M V30 22 C 7. | M V30 22 C 7.90901 -1.78515 0.0 0 | ||
M V30 23 C | M V30 23 C 7.17395 -2.20882 0.0 0 | ||
M V30 24 C 8. | M V30 24 C 8.64632 -2.2106 0.0 0 | ||
M V30 25 N 7. | M V30 25 N 7.9141 -3.48701 0.0 0 | ||
M V30 26 C 8. | M V30 26 C 8.64809 -3.05737 0.0 0 | ||
M V30 27 C 4. | M V30 27 C 4.98697 -6.01514 0.0 0 | ||
M V30 28 N 6. | M V30 28 N 6.45845 -6.01473 0.0 0 | ||
M V30 29 C 5. | M V30 29 C 5.7241 -5.58984 0.0 0 | ||
M V30 30 C 6. | M V30 30 C 6.45845 -6.86595 0.0 0 | ||
M V30 31 C 4. | M V30 31 C 4.98697 -6.86977 0.0 0 | ||
M V30 32 C 5. | M V30 32 C 5.72596 -7.29074 0.0 0 | ||
M V30 33 C | M V30 33 C 7.19535 -7.29046 0.0 0 | ||
M V30 34 C 8. | M V30 34 C 8.66688 -7.28764 0.0 0 | ||
M V30 35 N 7. | M V30 35 N 7.93179 -6.86395 0.0 0 | ||
M V30 36 C 8. | M V30 36 C 8.66826 -8.13887 0.0 0 | ||
M V30 37 C | M V30 37 C 7.19675 -8.14508 0.0 0 | ||
M V30 38 C 7. | M V30 38 C 7.93643 -8.56485 0.0 0 | ||
M V30 39 Ru 7. | M V30 39 Ru 7.90744 -5.10948 0.0 0 CHG=2 | ||
M V30 40 O 9. | M V30 40 O 9.27558 -4.15054 0.0 0 | ||
M V30 41 O 9. | M V30 41 O 9.32346 -5.80948 0.0 0 | ||
M V30 42 C | M V30 42 C 10.1416 -3.65054 0.0 0 | ||
M V30 43 C 10. | M V30 43 C 10.1416 -2.65054 0.0 0 | ||
M V30 44 C | M V30 44 C 11.0076 -4.15054 0.0 0 | ||
M V30 45 C 10. | M V30 45 C 10.1895 -6.30948 0.0 0 | ||
M V30 46 C | M V30 46 C 11.0555 -5.80948 0.0 0 | ||
M V30 47 C 10. | M V30 47 C 10.1895 -7.30948 0.0 0 | ||
M V30 END ATOM | M V30 END ATOM | ||
M V30 BEGIN BOND | M V30 BEGIN BOND | ||
Line 455: | Line 454: | ||
M V30 44 10 39 41 | M V30 44 10 39 41 | ||
M V30 45 2 40 42 | M V30 45 2 40 42 | ||
M V30 46 | M V30 46 1 42 43 | ||
M V30 47 1 42 44 | M V30 47 1 42 44 | ||
M V30 48 | M V30 48 2 41 45 | ||
M V30 49 1 | M V30 49 1 45 46 | ||
M V30 50 1 | M V30 50 1 45 47 | ||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | M V30 END CTAB | ||
Line 662: | Line 661: | ||
==== Investigations ==== | ==== Investigations ==== | ||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name= | {{#experimentlist: |form=Photocatalytic_CO2_conversion_experiments|name=CO2 reduction experiments}} | ||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name= | {{#experimentlist: |form=Photocatalytic_CO2_conversion_experiments|name=Optimization of concentrations}} | ||
{{#experimentlist:|form=Cyclic_Voltammetry_experiments|name=Table 3 - CV}} | {{#experimentlist:|form=Cyclic_Voltammetry_experiments|name=Table 3 - CV}} | ||
Line 672: | Line 671: | ||
==== Additives ==== | ==== Additives ==== | ||
No additives were used in the described experiments. | No additives were used in the described experiments.[[Category:Publication]] |
Latest revision as of 15:15, 5 July 2024
Abstract[edit | edit source]
Summary[edit | edit source]
A photochemical reduction of CO2 to formic acid was shown using a system containing an iridium-based photosensitizer, ruthenium photocatalyst and triethanolamine as the electron donor. Turnover numbers up to 526 and a selectivity of 80% towards formic acid were observed if the reaction was performed with [Ir(ppy)2(bpy)]PF6 ([Ir(ppy)2(bpy)][PF6]) as the photosensitizer and [Ru(bpy)2(Cl)(CO)]PF6 (100837) as the catalyst. The experiments were conducted under irradiation with Hg-lamp equipped with a λ=400–700 nm filter.
Advances and special progress[edit | edit source]
The employed photocatalytic system showed activity for the photoreduction of Na2CO3 to formic acid as well. A TON of 53 was observed after 5h reaction time.
Additional remarks[edit | edit source]
Experiments using different electron and proton donors such as triethylamine (TEA) and 1-benzyl-1,4-dihydronicotinamide (BNAH) were unsuccessful as the observed activities were lower than those obtained in the presence of TEOA.
Content of the published article in detail[edit | edit source]
The article contains results for the reduction of CO2 to formic under visible-light catalysis using ruthenium complexes as catalysts, the iridium complex [Ir(ppy)2(bpy)]PF6 ([Ir(ppy)2(bpy)][PF6]) as a photosensitizer and triethanolamine as the electron donor. The catalytic system performs best (referring to the TON of HCOOH production) with [Ru(bpy)2(Cl)(CO)]PF6 (100837) as photocatalyst.
Catalysts[edit | edit source]
Ru(bpy)2Cl2 Ru(bpy)2CO3 [Ru(bpy)2ClCO][PF6] [Ru(bpy)(H2O)(CO)][PF6] [Ru(bpy)(AcMe)2][PF6] [Ru(bpy)2HCO][PF6]
Photosensitizer[edit | edit source]
Investigations[edit | edit source]
cat | cat conc [µM] | PS | PS conc [mM] | e-D | solvent A | . | λexc [nm] | TON CO | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 25 | 0.025 | 400 - 700 | 1 | 2 | 13 | ||||||
2. | 25 | 0.025 | 400 - 700 | 2 | 4 | 21 | ||||||
3. | 25 | 0.025 | 400 - 700 | 13 | 8 | 62 | ||||||
4. | 25 | 0.025 | 400 - 700 | 8 | 8 | 34 | ||||||
5. | 25 | 0.025 | 400 - 700 | 7 | 9 | 40 | ||||||
6. | 25 | 0.025 | 400 - 700 | 3 | 4 | 27 |
cat | cat conc [µM] | PS | PS conc [mM] | e-D | solvent A | . | λexc [nm] | TON CO | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 6.2 | 0.025 | 400 - 700 | 3 | 9 | 26 | ||||||
2. | 6.2 | 0.025 | 400 - 700 | 3 | 11 | 39 | ||||||
3. | 6.2 | 0.025 | 400 - 700 | 19 | 19 | 117 | ||||||
4. | 6.2 | 0.025 | 400 - 700 | 21 | 16 | 107 | ||||||
5. | 6.2 | 0.025 | 400 - 700 | 21 | 14 | 75 | ||||||
6. | 6.2 | 0.025 | 400 - 700 | 4 | 12 | 64 | ||||||
7. | 3.1 | 0.025 | 400 - 700 | 36 | 33 | 296 | ||||||
8. | 3.1 | 0.025 | 400 - 700 | 16 | 29 | 145 | ||||||
9. | 3.1 | 0.025 | 400 - 700 | 34 | 28 | 211 | ||||||
10. | 1.6 | 0.025 | 400 - 700 | 40 | 67 | 419 | ||||||
11. | 1.6 | 0.025 | 400 - 700 | 25 | 62 | 225 | ||||||
12. | 1.6 | 0.025 | 400 - 700 | 45 | 65 | 335 | ||||||
13. | 1.6 | 0.025 | 400 - 700 | 4 | 44 | 75 |
analyte | reduction potential | solvent | electrolyte | . | . | WE | . | . | RE | . | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0,-2.11 | glassy carbon | Ag/AgNO3 in MeCN | ||||||||
2. | 0.45,-1.97 | glassy carbon | Ag/AgNO3 in MeCN | ||||||||
3. | 1.22,-1.75 | glassy carbon | Ag/AgNO3 in MeCN | ||||||||
4. | 1.20,-1.61 | glassy carbon | Ag/AgNO3 in MeCN |
Sacrificial electron donor[edit | edit source]
In this study, the experiments were done with the sacrificial electron donor TEOA (100507).
Additives[edit | edit source]
No additives were used in the described experiments.
Investigations
- CO2 reduction experiments (Molecular process, Photocatalytic CO2 conversion experiments)
- Optimization of concentrations (Molecular process, Photocatalytic CO2 conversion experiments)
- Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)
- Table 2 (Molecular process, Photocatalytic CO2 conversion experiments)
- Table 3 - CV (Assay, Cyclic Voltammetry experiments)