Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction: Difference between revisions

From ChemWiki
publication
About
DOI 10.1039/c6sc01913g
Authors Jana Rohacova, Osamu Ishitani,
Submitted 05.07.2016
Published online 2016
Licenses -
Subjects -
Go to literature page
m (auto-generated)
m (auto-generated)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{FaultyMolecule}}{{BaseTemplate}}
{{BaseTemplate}}
{{DOI|doi=10.1039/c6sc01913g}}{{MissingInvestigation}}  
{{DOI|doi=10.1039/c6sc01913g}}
===Abstract===
===Abstract===
==== Summary====
==== Summary====
A photochemical reduction of CO<sub>2</sub> to CO or formic acid was shown using the bipyridine-based rhenium, ruthenium and manganese catalysts {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}}, {{#moleculelink:|link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} or {{#moleculelink: |link=OMERWMHUIAGAOR-UHFFFAOYSA-N|image=false|width=300|height=200}} in combination with cyclic rhenium-based trinuclear redox photosensitizers. Turnover numbers (TONs) of  up to 290 for formic acid were reached in DMA with the ruthenium complex {{#moleculelink:|link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} and photosensitizer {{#moleculelink:|link=KSOIVZAANOLODS-UHFFFAOYSA-T|image=false|width=300|height=200}}. For CO production, TONs of up to 98 were obtained in DMF with the rhenium complex {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}} and photosensitizer {{#moleculelink:|link=LOLRMPNEYKEGPF-UHFFFAOYSA-T|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ = 436 nm) using TEOA as sacrificial electron donor (see section SEDs below).
A photochemical reduction of CO<sub>2</sub> to CO or formic acid was shown using the bipyridine-based rhenium, ruthenium and manganese catalysts {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}}, {{#moleculelink: |link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} or {{#moleculelink: |link=OMERWMHUIAGAOR-UHFFFAOYSA-N|image=false|width=300|height=200}} in combination with cyclic rhenium-based trinuclear redox photosensitizers. Turnover numbers (TONs) of  up to 290 for formic acid were reached in DMA with the ruthenium complex {{#moleculelink: |link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} and photosensitizer {{#moleculelink: |link=JLRZSCLFGATQEH-UHFFFAOYSA-T|image=false|width=300|height=200}}. For CO production, TONs of up to 98 were obtained in DMF with the rhenium complex {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}} and photosensitizer {{#moleculelink: |link=LKSLWZSWOWNWCR-UHFFFAOYSA-T|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ = 436 nm) using TEOA as sacrificial electron donor (see section SEDs below).
====Advances and special progress====
====Advances and special progress====
Re(I)-based trinuclear photosensitizers were developed and allowed for high product selectivities for CO or formic acid in CO<sub>2</sub> reduction attempts with different bipyridine-based catalysts.
Re(I)-based trinuclear photosensitizers were developed and allowed for high product selectivities for CO or formic acid in CO<sub>2</sub> reduction attempts with different bipyridine-based catalysts.
Line 82: Line 82:
M  V30 END CTAB
M  V30 END CTAB
M  END
M  END
</chemform><chemform smiles="C(C(C)(C)C)1C=C2C3C=C(C(C)(C)C)C=CN=3[Ru+2]([Cl-])([Cl-])([C-]#[O+])([C-]#[O+])N2=CC=1" inchikey="XUQJAKJUMNDNTK-UHFFFAOYSA-L" inchi="1S/C18H24N2.2CO.2ClH.Ru/c1-17(2,3)13-7-9-19-15(11-13)16-12-14(8-10-20-16)18(4,5)6;2*1-2;;;/h7-12H,1-6H3;;;2*1H;/q;;;;;+2/p-2" float="none" width="300" height="200">
</chemform><chemform smiles="CC(C)(C)C1=CC2=N(~[Ru](~Cl)(~Cl)(~C#O)(~C#O)~N3=C2C=C(C(C)(C)C)C=C3)C=C1" inchikey="XUQJAKJUMNDNTK-UHFFFAOYSA-L" inchi="InChI=1S/C18H24N2.2CO.2ClH.Ru/c1-17(2,3)13-7-9-19-15(11-13)16-12-14(8-10-20-16)18(4,5)6;2*1-2;;;/h7-12H,1-6H3;;;2*1H;/q;;;;;+2/p-2" float="none" width="200" height="200">
  -INDIGO-01102416342D
    RDKit          2D


   0  0  0  0  0  0  0  0  0  0  0 V3000
   0  0  0  0  0  0  0  0  0  0999 V3000
M  V30 BEGIN CTAB
M  V30 BEGIN CTAB
M  V30 COUNTS 27 29 0 0 0
M  V30 COUNTS 27 29 0 0 0
M  V30 BEGIN ATOM
M  V30 BEGIN ATOM
M  V30 1 C 5.43485 -2.27507 0.0 0
M  V30 1 C 3.05985 -4.92507 0 0
M  V30 2 C 7.16515 -2.27459 0.0 0
M  V30 2 C 4.79015 -4.92459 0 0
M  V30 3 C 6.30164 -1.77497 0.0 0
M  V30 3 C 3.92664 -4.42497 0 0
M  V30 4 N 7.16515 -3.27553 0.0 0
M  V30 4 N 4.79015 -5.92553 0 0
M  V30 5 C 5.43485 -3.28002 0.0 0
M  V30 5 C 3.05985 -5.93002 0 0
M  V30 6 C 6.30382 -3.77503 0.0 0
M  V30 6 C 3.92882 -6.42503 0 0
M  V30 7 C 6.30382 -4.77503 0.0 0
M  V30 7 C 6.75985 -2.90007 0 0
M  V30 8 C 7.1704 -6.2727 0.0 0
M  V30 8 C 8.49015 -2.89959 0 0
M  V30 9 N 7.17066 -5.27506 0.0 0
M  V30 9 C 7.62664 -2.39997 0 0
M  V30 10 C 6.30389 -6.77375 0.0 0
M  V30 10 C 8.49015 -3.90053 0 0
M  V30 11 C 5.43385 -5.27809 0.0 0
M  V30 11 C 6.75985 -3.90502 0 0
M  V30 12 C 5.44031 -6.27814 0.0 0
M  V30 12 N 7.62882 -4.40003 0 0
M  V30 13 Ru 8.325 -4.25 0.0 0 CHG=2
M  V30 13 Ru 6.85 -6.2 0 0
M  V30 14 C 4.57429 -6.77814 0.0 0
M  V30 14 Cl 9.15 -5.55 0 0
M  V30 15 C 3.70826 -7.27814 0.0 0
M  V30 15 Cl 5.675 -7.425 0 0
M  V30 16 C 9.28211 -3.26789 0.0 0 CHG=-1
M  V30 16 C 7.10882 -7.16593 0 0
M  V30 17 C 9.28211 -5.20711 0.0 0 CHG=-1
M  V30 17 C 7.71603 -6.7 0 0
M  V30 18 O 9.98921 -5.91421 0.0 0 CHG=1
M  V30 18 O 7.62671 -8.02303 0 0
M  V30 19 O 9.98921 -2.56079 0.0 0 CHG=1
M  V30 19 O 8.74102 -6.675 0 0
M  V30 20 Cl 8.325 -5.575 0.0 0 CHG=-1
M  V30 20 C 2.19382 -4.42507 0 0
M  V30 21 Cl 8.325 -2.95 0.0 0 CHG=-1
M  V30 21 C 2.94382 -3.12603 0 0
M  V30 22 C 4.56882 -1.77507 0.0 0
M  V30 22 C 1.44382 -5.72411 0 0
M  V30 23 C 3.7028 -1.27507 0.0 0
M  V30 23 C 0.89478 -3.67507 0 0
M  V30 24 C 4.06882 -2.6411 0.0 0
M  V30 24 C 7.62664 -1.39997 0 0
M  V30 25 C 5.06882 -0.909045 0.0 0
M  V30 25 C 9.12664 -1.39997 0 0
M  V30 26 C 5.07429 -7.64417 0.0 0
M  V30 26 C 6.12664 -1.39997 0 0
M  V30 27 C 4.07429 -5.91211 0.0 0
M  V30 27 C 7.62664 0.10003 0 0
M  V30 END ATOM
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 BEGIN BOND
Line 124: Line 124:
M  V30 5 2 5 6
M  V30 5 2 5 6
M  V30 6 1 6 4
M  V30 6 1 6 4
M  V30 7 1 6 7
M  V30 7 2 9 7
M  V30 8 2 9 7
M  V30 8 2 10 8
M  V30 9 2 10 8
M  V30 9 1 7 11
M  V30 10 1 7 11
M  V30 10 1 8 9
M  V30 11 1 8 9
M  V30 11 2 11 12
M  V30 12 2 11 12
M  V30 12 1 12 10
M  V30 13 1 12 10
M  V30 13 1 2 11
M  V30 14 10 4 13
M  V30 14 8 13 4
M  V30 15 10 9 13
M  V30 15 8 13 12
M  V30 16 1 12 14
M  V30 16 8 13 15
M  V30 17 1 14 15
M  V30 17 8 13 14
M  V30 18 10 13 16
M  V30 18 8 13 16
M  V30 19 10 13 17
M  V30 19 8 13 17
M  V30 20 3 17 18
M  V30 20 3 16 18
M  V30 21 3 16 19
M  V30 21 3 17 19
M  V30 22 10 13 20
M  V30 22 1 20 21
M  V30 23 10 13 21
M  V30 23 1 20 22
M  V30 24 1 1 22
M  V30 24 1 20 23
M  V30 25 1 22 23
M  V30 25 1 1 20
M  V30 26 1 22 24
M  V30 26 1 24 25
M  V30 27 1 22 25
M  V30 27 1 24 26
M  V30 28 1 14 26
M  V30 28 1 24 27
M  V30 29 1 14 27
M  V30 29 1 9 24
M  V30 END BOND
M  V30 END BOND
M  V30 END CTAB
M  V30 END CTAB
Line 641: Line 641:
==== Additives====
==== Additives====
In this study, no additives were tested.
In this study, no additives were tested.
[[Category:Photocatalytic CO2 conversion to HCOOH]]
[[Category:Photocatalytic CO2 conversion to HCOOH]][[Category:Publication]]

Latest revision as of 13:46, 3 May 2024


Abstract[edit | edit source]

Summary[edit | edit source]

A photochemical reduction of CO2 to CO or formic acid was shown using the bipyridine-based rhenium, ruthenium and manganese catalysts [Re(bpy)(CO)3(MeCN)][PF6], Ru(dtBubpy)(CO)2Cl2 or [Mn(dtBubpy)(CO)3(MeCN)][PF6] in combination with cyclic rhenium-based trinuclear redox photosensitizers. Turnover numbers (TONs) of up to 290 for formic acid were reached in DMA with the ruthenium complex Ru(dtBubpy)(CO)2Cl2 and photosensitizer 100877. For CO production, TONs of up to 98 were obtained in DMF with the rhenium complex [Re(bpy)(CO)3(MeCN)][PF6] and photosensitizer 100878. The experiments were conducted under visible-light irradiation (λ = 436 nm) using TEOA as sacrificial electron donor (see section SEDs below).

Advances and special progress[edit | edit source]

Re(I)-based trinuclear photosensitizers were developed and allowed for high product selectivities for CO or formic acid in CO2 reduction attempts with different bipyridine-based catalysts.

Additional remarks[edit | edit source]

Content of the published article in detail[edit | edit source]

The article contains results for the reduction of CO2 to CO or formic acid under visible-light catalysis using bipyridine-based complexes and rhenium-based trinuclear rings as photosensitizers. The catalytic system performs best in DMA for formic acid production (referring to the TON of formic acid production) and in DMF for CO production.

Catalyst[edit | edit source]

[Re(bpy)(CO)3(MeCN)][PF6] Ru(dtBubpy)(CO)2Cl2 [Mn(dtBubpy)(CO)3(MeCN)][PF6]

Photosensitizer[edit | edit source]

100730 [Show R-Groups]

Investigation[edit | edit source]

Investigation-Name: Table 1
catcat conc [µM]PSPS conc [mM]e-De-D conc [M]solvent A..λexc [nm].TON COTON H2TON HCOOH...
1.

Ru(dtBubpy)(CO)2Cl2

0.05

Molecule:100877

0.05


DMF

4362072290
2.

Ru(dtBubpy)(CO)2Cl2

0.05

Molecule:100877

0.05

BI(OH)H

0.03

DMF

4361649280
3.

[Mn(dtBubpy)(CO)3(MeCN)][PF6]

0.05

Molecule:100877

0.05


DMF

4363285
4.

[Mn(dtBubpy)(CO)3(MeCN)][PF6]

0.05

Molecule:100877

0.05

BI(OH)H

0.03

DMF

4368060
Investigation-Name: Table 2

Sacrificial Electron Donor[edit | edit source]

In this study, the experiments were done with the sacrificial electron donor TEOA (100507).

Additives[edit | edit source]

In this study, no additives were tested.

Investigations

  • Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)
  • Table 2 (Molecular process, Photocatalytic CO2 conversion experiments)