Rhenium(I) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO2 reduction: Difference between revisions

From ChemWiki
publication
About
DOI 10.1039/c6sc01913g
Authors Jana Rohacova, Osamu Ishitani,
Submitted 05.07.2016
Published online 2016
Licenses -
Subjects -
Go to literature page
No edit summary
Tag: Reverted
m (auto-generated)
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{FaultyMolecule}}{{BaseTemplate}}
{{BaseTemplate}}
{{DOI|doi=10.1039/c6sc01913g}}{{MissingInvestigation}}  
{{DOI|doi=10.1039/c6sc01913g}}
===Abstract===
===Abstract===
==== Summary====
==== Summary====
A photochemical reduction of CO<sub>2</sub> to CO or formic acid was shown using the bipyridine-based rhenium, ruthenium and manganese catalysts {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}}, {{#moleculelink:|link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} or {{#moleculelink: |link=OMERWMHUIAGAOR-UHFFFAOYSA-N|image=false|width=300|height=200}} in combination with cyclic rhenium-based trinuclear redox photosensitizers. Turnover numbers (TONs) of  up to 290 for formic acid were reached in DMA with the ruthenium complex {{#moleculelink:|link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} and photosensitizer {{#moleculelink:|link=KSOIVZAANOLODS-UHFFFAOYSA-T|image=false|width=300|height=200}}. For CO production, TONs of up to 98 were obtained in DMF with the rhenium complex {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}} and photosensitizer {{#moleculelink:|link=LOLRMPNEYKEGPF-UHFFFAOYSA-T|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ = 436 nm) using TEOA as sacrificial electron donor (see section SEDs below).
A photochemical reduction of CO<sub>2</sub> to CO or formic acid was shown using the bipyridine-based rhenium, ruthenium and manganese catalysts {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}}, {{#moleculelink: |link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} or {{#moleculelink: |link=OMERWMHUIAGAOR-UHFFFAOYSA-N|image=false|width=300|height=200}} in combination with cyclic rhenium-based trinuclear redox photosensitizers. Turnover numbers (TONs) of  up to 290 for formic acid were reached in DMA with the ruthenium complex {{#moleculelink: |link=XUQJAKJUMNDNTK-UHFFFAOYSA-L|image=false|width=300|height=200}} and photosensitizer {{#moleculelink: |link=JLRZSCLFGATQEH-UHFFFAOYSA-T|image=false|width=300|height=200}}. For CO production, TONs of up to 98 were obtained in DMF with the rhenium complex {{#moleculelink:|link=NZCMNMSVXYOMGS-UHFFFAOYSA-N|image=false|width=300|height=200}} and photosensitizer {{#moleculelink: |link=LKSLWZSWOWNWCR-UHFFFAOYSA-T|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ = 436 nm) using TEOA as sacrificial electron donor (see section SEDs below).
====Advances and special progress====
====Advances and special progress====
Re(I)-based trinuclear photosensitizers were developed and allowed for high product selectivities for CO or formic acid in CO<sub>2</sub> reduction attempts with different bipyridine-based catalysts.
Re(I)-based trinuclear photosensitizers were developed and allowed for high product selectivities for CO or formic acid in CO<sub>2</sub> reduction attempts with different bipyridine-based catalysts.
c
 
====Additional remarks====
====Additional remarks====
===Content of the published article in detail===
===Content of the published article in detail===
Line 82: Line 82:
M  V30 END CTAB
M  V30 END CTAB
M  END
M  END
</chemform><chemform smiles="C(C(C)(C)C)1C=C2C3C=C(C(C)(C)C)C=CN=3[Ru+2]([Cl-])([Cl-])([C-]#[O+])([C-]#[O+])N2=CC=1" inchikey="XUQJAKJUMNDNTK-UHFFFAOYSA-L" inchi="1S/C18H24N2.2CO.2ClH.Ru/c1-17(2,3)13-7-9-19-15(11-13)16-12-14(8-10-20-16)18(4,5)6;2*1-2;;;/h7-12H,1-6H3;;;2*1H;/q;;;;;+2/p-2" float="none" width="300" height="200">
</chemform><chemform smiles="CC(C)(C)C1=CC2=N(~[Ru](~Cl)(~Cl)(~C#O)(~C#O)~N3=C2C=C(C(C)(C)C)C=C3)C=C1" inchikey="XUQJAKJUMNDNTK-UHFFFAOYSA-L" inchi="InChI=1S/C18H24N2.2CO.2ClH.Ru/c1-17(2,3)13-7-9-19-15(11-13)16-12-14(8-10-20-16)18(4,5)6;2*1-2;;;/h7-12H,1-6H3;;;2*1H;/q;;;;;+2/p-2" float="none" width="200" height="200">
  -INDIGO-01102416342D
    RDKit          2D


   0  0  0  0  0  0  0  0  0  0  0 V3000
   0  0  0  0  0  0  0  0  0  0999 V3000
M  V30 BEGIN CTAB
M  V30 BEGIN CTAB
M  V30 COUNTS 27 29 0 0 0
M  V30 COUNTS 27 29 0 0 0
M  V30 BEGIN ATOM
M  V30 BEGIN ATOM
M  V30 1 C 5.43485 -2.27507 0.0 0
M  V30 1 C 3.05985 -4.92507 0 0
M  V30 2 C 7.16515 -2.27459 0.0 0
M  V30 2 C 4.79015 -4.92459 0 0
M  V30 3 C 6.30164 -1.77497 0.0 0
M  V30 3 C 3.92664 -4.42497 0 0
M  V30 4 N 7.16515 -3.27553 0.0 0
M  V30 4 N 4.79015 -5.92553 0 0
M  V30 5 C 5.43485 -3.28002 0.0 0
M  V30 5 C 3.05985 -5.93002 0 0
M  V30 6 C 6.30382 -3.77503 0.0 0
M  V30 6 C 3.92882 -6.42503 0 0
M  V30 7 C 6.30382 -4.77503 0.0 0
M  V30 7 C 6.75985 -2.90007 0 0
M  V30 8 C 7.1704 -6.2727 0.0 0
M  V30 8 C 8.49015 -2.89959 0 0
M  V30 9 N 7.17066 -5.27506 0.0 0
M  V30 9 C 7.62664 -2.39997 0 0
M  V30 10 C 6.30389 -6.77375 0.0 0
M  V30 10 C 8.49015 -3.90053 0 0
M  V30 11 C 5.43385 -5.27809 0.0 0
M  V30 11 C 6.75985 -3.90502 0 0
M  V30 12 C 5.44031 -6.27814 0.0 0
M  V30 12 N 7.62882 -4.40003 0 0
M  V30 13 Ru 8.325 -4.25 0.0 0 CHG=2
M  V30 13 Ru 6.85 -6.2 0 0
M  V30 14 C 4.57429 -6.77814 0.0 0
M  V30 14 Cl 9.15 -5.55 0 0
M  V30 15 C 3.70826 -7.27814 0.0 0
M  V30 15 Cl 5.675 -7.425 0 0
M  V30 16 C 9.28211 -3.26789 0.0 0 CHG=-1
M  V30 16 C 7.10882 -7.16593 0 0
M  V30 17 C 9.28211 -5.20711 0.0 0 CHG=-1
M  V30 17 C 7.71603 -6.7 0 0
M  V30 18 O 9.98921 -5.91421 0.0 0 CHG=1
M  V30 18 O 7.62671 -8.02303 0 0
M  V30 19 O 9.98921 -2.56079 0.0 0 CHG=1
M  V30 19 O 8.74102 -6.675 0 0
M  V30 20 Cl 8.325 -5.575 0.0 0 CHG=-1
M  V30 20 C 2.19382 -4.42507 0 0
M  V30 21 Cl 8.325 -2.95 0.0 0 CHG=-1
M  V30 21 C 2.94382 -3.12603 0 0
M  V30 22 C 4.56882 -1.77507 0.0 0
M  V30 22 C 1.44382 -5.72411 0 0
M  V30 23 C 3.7028 -1.27507 0.0 0
M  V30 23 C 0.89478 -3.67507 0 0
M  V30 24 C 4.06882 -2.6411 0.0 0
M  V30 24 C 7.62664 -1.39997 0 0
M  V30 25 C 5.06882 -0.909045 0.0 0
M  V30 25 C 9.12664 -1.39997 0 0
M  V30 26 C 5.07429 -7.64417 0.0 0
M  V30 26 C 6.12664 -1.39997 0 0
M  V30 27 C 4.07429 -5.91211 0.0 0
M  V30 27 C 7.62664 0.10003 0 0
M  V30 END ATOM
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 BEGIN BOND
Line 124: Line 124:
M  V30 5 2 5 6
M  V30 5 2 5 6
M  V30 6 1 6 4
M  V30 6 1 6 4
M  V30 7 1 6 7
M  V30 7 2 9 7
M  V30 8 2 9 7
M  V30 8 2 10 8
M  V30 9 2 10 8
M  V30 9 1 7 11
M  V30 10 1 7 11
M  V30 10 1 8 9
M  V30 11 1 8 9
M  V30 11 2 11 12
M  V30 12 2 11 12
M  V30 12 1 12 10
M  V30 13 1 12 10
M  V30 13 1 2 11
M  V30 14 10 4 13
M  V30 14 8 13 4
M  V30 15 10 9 13
M  V30 15 8 13 12
M  V30 16 1 12 14
M  V30 16 8 13 15
M  V30 17 1 14 15
M  V30 17 8 13 14
M  V30 18 10 13 16
M  V30 18 8 13 16
M  V30 19 10 13 17
M  V30 19 8 13 17
M  V30 20 3 17 18
M  V30 20 3 16 18
M  V30 21 3 16 19
M  V30 21 3 17 19
M  V30 22 10 13 20
M  V30 22 1 20 21
M  V30 23 10 13 21
M  V30 23 1 20 22
M  V30 24 1 1 22
M  V30 24 1 20 23
M  V30 25 1 22 23
M  V30 25 1 1 20
M  V30 26 1 22 24
M  V30 26 1 24 25
M  V30 27 1 22 25
M  V30 27 1 24 26
M  V30 28 1 14 26
M  V30 28 1 24 27
M  V30 29 1 14 27
M  V30 29 1 9 24
M  V30 END BOND
M  V30 END BOND
M  V30 END CTAB
M  V30 END CTAB
Line 240: Line 240:


====Photosensitizer ====
====Photosensitizer ====
<chemform smiles="C1C=C2P(C3C=CC=CC=3)(C3C=CC=CC=3)~[Re+]3(N4=C(C5N3=CC([*])=C([*])C=5)C=C([*])C([*])=C4)([C-]#[O+])([C-]#[O+])~P(C3C=CC=CC=3)(C3C=CC=CC=3)C3C=CC(P(C4C=CC=CC=4)(C4C=CC=CC=4)~[Re+]4(N5=C(C6N4=CC([*])=C([*])C=6)C=C([*])C([*])=C5)([C-]#[O+])([C-]#[O+])~P(C4C=CC=CC=4)(C4C=CC=CC=4)C4C=CC(P(C5C=CC=CC=5)(C5C=CC=CC=5)~[Re+]5(N6=CC([*])=C([*])C=C6C6C=C([*])C([*])=CN=65)([C-]#[O+])([C-]#[O+])~P(C5C=CC=CC=5)(C5C=CC=CC=5)C=1C=C2)=CC=4)=CC=3" inchi="" inchikey="" height="200px" width="300px" float="none" r1="H,CH3,CH3,H" r2="CH3,H,CH3,OMe">
<chemform smiles="C1C=C2P(C3C=CC=CC=3)(C3C=CC=CC=3)~[Re+]3(N4=C(C5N3=CC([*])=C([*])C=5)C=C([*])C([*])=C4)([C-]#[O+])([C-]#[O+])~P(C3C=CC=CC=3)(C3C=CC=CC=3)C3C=CC(P(C4C=CC=CC=4)(C4C=CC=CC=4)~[Re+]4(N5=C(C6N4=CC([*])=C([*])C=6)C=C([*])C([*])=C5)([C-]#[O+])([C-]#[O+])~P(C4C=CC=CC=4)(C4C=CC=CC=4)C4C=CC(P(C5C=CC=CC=5)(C5C=CC=CC=5)~[Re+]5(N6=CC([*])=C([*])C=C6C6C=C([*])C([*])=CN=65)([C-]#[O+])([C-]#[O+])~P(C5C=CC=CC=5)(C5C=CC=CC=5)C=1C=C2)=CC=4)=CC=3.[P-](F)(F)(F)(F)(F)F.[P-](F)(F)(F)(F)(F)F.[P-](F)(F)(F)(F)(F)F" inchikey="" inchi="" float="none" width="200" height="200" r1="H,CH3,CH3,H" r2="CH3,H,CH3,OMe">
   -INDIGO-02192415292D
   -INDIGO-02262410222D


   0  0  0  0  0  0  0  0  0  0  0 V3000
   0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 BEGIN CTAB
M  V30 COUNTS 159 183 0 0 0
M  V30 COUNTS 180 201 0 0 0
M  V30 BEGIN ATOM
M  V30 BEGIN ATOM
M  V30 1 C 6.35983 -3.83559 0.0 0
M  V30 1 C 6.35983 -3.83559 0.0 0
Line 406: Line 406:
M  V30 158 R# 6.3044 0.786395 0.0 0 RGROUPS=(1 2)
M  V30 158 R# 6.3044 0.786395 0.0 0 RGROUPS=(1 2)
M  V30 159 R# 12.5314 0.789322 0.0 0 RGROUPS=(1 2)
M  V30 159 R# 12.5314 0.789322 0.0 0 RGROUPS=(1 2)
M  V30 160 P 16.625 -2.225 0.0 0 CHG=-1
M  V30 161 F 16.125 -1.35897 0.0 0
M  V30 162 F 16.125 -3.09103 0.0 0
M  V30 163 F 17.625 -2.225 0.0 0
M  V30 164 F 17.125 -1.35897 0.0 0
M  V30 165 F 17.125 -3.09103 0.0 0
M  V30 166 F 15.625 -2.225 0.0 0
M  V30 167 P 2.775 -2.375 0.0 0 CHG=-1
M  V30 168 F 2.275 -1.50897 0.0 0
M  V30 169 F 2.275 -3.24103 0.0 0
M  V30 170 F 3.775 -2.375 0.0 0
M  V30 171 F 3.275 -1.50897 0.0 0
M  V30 172 F 3.275 -3.24103 0.0 0
M  V30 173 F 1.775 -2.375 0.0 0
M  V30 174 P 9.55 -13.35 0.0 0 CHG=-1
M  V30 175 F 9.05 -12.484 0.0 0
M  V30 176 F 9.05 -14.216 0.0 0
M  V30 177 F 10.55 -13.35 0.0 0
M  V30 178 F 10.05 -12.484 0.0 0
M  V30 179 F 10.05 -14.216 0.0 0
M  V30 180 F 8.55 -13.35 0.0 0
M  V30 END ATOM
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 BEGIN BOND
Line 591: Line 612:
M  V30 182 1 128 158
M  V30 182 1 128 158
M  V30 183 1 135 159
M  V30 183 1 135 159
M  V30 184 1 160 161
M  V30 185 1 160 162
M  V30 186 1 160 163
M  V30 187 1 160 164
M  V30 188 1 160 165
M  V30 189 1 160 166
M  V30 190 1 167 168
M  V30 191 1 167 169
M  V30 192 1 167 170
M  V30 193 1 167 171
M  V30 194 1 167 172
M  V30 195 1 167 173
M  V30 196 1 174 175
M  V30 197 1 174 176
M  V30 198 1 174 177
M  V30 199 1 174 178
M  V30 200 1 174 179
M  V30 201 1 174 180
M  V30 END BOND
M  V30 END BOND
M  V30 END CTAB
M  V30 END CTAB
Line 602: Line 641:
==== Additives====
==== Additives====
In this study, no additives were tested.
In this study, no additives were tested.
[[Category:Photocatalytic CO2 conversion to HCOOH]]
[[Category:Photocatalytic CO2 conversion to HCOOH]][[Category:Publication]]

Latest revision as of 13:46, 3 May 2024


Abstract[edit | edit source]

Summary[edit | edit source]

A photochemical reduction of CO2 to CO or formic acid was shown using the bipyridine-based rhenium, ruthenium and manganese catalysts [Re(bpy)(CO)3(MeCN)][PF6], Ru(dtBubpy)(CO)2Cl2 or [Mn(dtBubpy)(CO)3(MeCN)][PF6] in combination with cyclic rhenium-based trinuclear redox photosensitizers. Turnover numbers (TONs) of up to 290 for formic acid were reached in DMA with the ruthenium complex Ru(dtBubpy)(CO)2Cl2 and photosensitizer 100877. For CO production, TONs of up to 98 were obtained in DMF with the rhenium complex [Re(bpy)(CO)3(MeCN)][PF6] and photosensitizer 100878. The experiments were conducted under visible-light irradiation (λ = 436 nm) using TEOA as sacrificial electron donor (see section SEDs below).

Advances and special progress[edit | edit source]

Re(I)-based trinuclear photosensitizers were developed and allowed for high product selectivities for CO or formic acid in CO2 reduction attempts with different bipyridine-based catalysts.

Additional remarks[edit | edit source]

Content of the published article in detail[edit | edit source]

The article contains results for the reduction of CO2 to CO or formic acid under visible-light catalysis using bipyridine-based complexes and rhenium-based trinuclear rings as photosensitizers. The catalytic system performs best in DMA for formic acid production (referring to the TON of formic acid production) and in DMF for CO production.

Catalyst[edit | edit source]

[Re(bpy)(CO)3(MeCN)][PF6] Ru(dtBubpy)(CO)2Cl2 [Mn(dtBubpy)(CO)3(MeCN)][PF6]

Photosensitizer[edit | edit source]

100730 [Show R-Groups]

Investigation[edit | edit source]

Investigation-Name: Table 1
catcat conc [µM]PSPS conc [mM]e-De-D conc [M]solvent A..λexc [nm].TON COTON H2TON HCOOH...
1.

Ru(dtBubpy)(CO)2Cl2

0.05

Molecule:100877

0.05


DMF

4362072290
2.

Ru(dtBubpy)(CO)2Cl2

0.05

Molecule:100877

0.05

BI(OH)H

0.03

DMF

4361649280
3.

[Mn(dtBubpy)(CO)3(MeCN)][PF6]

0.05

Molecule:100877

0.05


DMF

4363285
4.

[Mn(dtBubpy)(CO)3(MeCN)][PF6]

0.05

Molecule:100877

0.05

BI(OH)H

0.03

DMF

4368060
Investigation-Name: Table 2

Sacrificial Electron Donor[edit | edit source]

In this study, the experiments were done with the sacrificial electron donor TEOA (100507).

Additives[edit | edit source]

In this study, no additives were tested.

Investigations

  • Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)
  • Table 2 (Molecular process, Photocatalytic CO2 conversion experiments)