Visible-Light Photocatalytic Reduction of CO2 to Formic Acid with a Ru Catalyst Supported by N,N’- Bis(diphenylphosphino)-2,6-diaminopyridine Ligands: Difference between revisions
About |
---|
No edit summary |
m (added Publication category) |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{DOI|doi=10.1002/cssc.201901326}} | ||
[[Category:Photocatalytic CO2 conversion to HCOOH]] | [[Category:Photocatalytic CO2 conversion to HCOOH]] | ||
===Abstract=== | ===Abstract=== | ||
====Summary==== | ====Summary==== | ||
A photochemical reduction of CO<sub>2</sub> to formic acid was shown using the ruthenium pincer complexes {{#moleculelink:|link=RQVVTEHURKEOIA-UHFFFAOYSA-M|image=false|width=300|height=200}} and {{#moleculelink:|link=XNTONGVEYKVCNE-UHFFFAOYSA-M|image=false|width=300|height=200}} as catalyst in combination with the ruthenium-based photosensitizer {{#moleculelink:|link=KLDYQWXVZLHTKT-UHFFFAOYSA-N|image=false|width=300|height=200}}. Turnover numbers (TONs) of 380 for formic acid were reached in dimethylformamide with complex {{#moleculelink:|link=XNTONGVEYKVCNE-UHFFFAOYSA-M|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ = 405 nm) using TEOA as sacrificial electron donor (see section SEDs below). | A photochemical reduction of CO<sub>2</sub> to formic acid was shown using the ruthenium pincer complexes {{#moleculelink: |link=RQVVTEHURKEOIA-UHFFFAOYSA-M|image=false|width=300|height=200}} and {{#moleculelink: |link=XNTONGVEYKVCNE-UHFFFAOYSA-M|image=false|width=300|height=200}} as catalyst in combination with the ruthenium-based photosensitizer {{#moleculelink:|link=KLDYQWXVZLHTKT-UHFFFAOYSA-N|image=false|width=300|height=200}}. Turnover numbers (TONs) of 380 for formic acid were reached in dimethylformamide with complex {{#moleculelink: |link=XNTONGVEYKVCNE-UHFFFAOYSA-M|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ = 405 nm) using TEOA as sacrificial electron donor (see section SEDs below). | ||
====Advances and special progress==== | ====Advances and special progress==== | ||
The authors report a novel molecular architecture for a ruthenium photocatalyst active in the reduction of CO<sub>2</sub> to formic acid, displaying competitive TONs and quantum yields up to 14%. | The authors report a novel molecular architecture for a ruthenium photocatalyst active in the reduction of CO<sub>2</sub> to formic acid, displaying competitive TONs and quantum yields up to 14%. | ||
Line 11: | Line 9: | ||
====Additional remarks==== | ====Additional remarks==== | ||
===Content of the published article in detail=== | ===Content of the published article in detail=== | ||
The article contains results for the reduction of CO<sub>2</sub> to formic acid under visible-light catalysis using ruthenium complexes as catalysts. The catalytic system performs best (referring to the TON of formic acid production) with complex {{#moleculelink:|link=XNTONGVEYKVCNE-UHFFFAOYSA-M|image=false|width=300|height=200}} in dimethylformamide. | The article contains results for the reduction of CO<sub>2</sub> to formic acid under visible-light catalysis using ruthenium complexes as catalysts. The catalytic system performs best (referring to the TON of formic acid production) with complex {{#moleculelink: |link=XNTONGVEYKVCNE-UHFFFAOYSA-M|image=false|width=300|height=200}} in dimethylformamide. | ||
==== Catalyst==== | ==== Catalyst==== | ||
<chemform smiles="C1C2N([*])P(C3C=CC=CC=3)(C3C=CC=CC=3)[Ru+]([C-]#[O+])([C-]#[O+])3P(C4C=CC=CC=4)(C4C=CC=CC=4)N([*])C(N=23)=CC=1.[Cl-]" inchikey="" inchi="" float="none" width="200" height="200" r1="H,Me"> | <chemform smiles="C1C2N([*])P(C3C=CC=CC=3)(C3C=CC=CC=3)[Ru+]([C-]#[O+])([C-]#[O+])3P(C4C=CC=CC=4)(C4C=CC=CC=4)N([*])C(N=23)=CC=1.[Cl-]" inchikey="" inchi="" float="none" width="200" height="200" r1="H,Me"> | ||
Line 244: | Line 242: | ||
In this study, the experiments were done with the sacrificial electron donors TEOA ([[Molecule:100507|100507]]). | In this study, the experiments were done with the sacrificial electron donors TEOA ([[Molecule:100507|100507]]). | ||
====Additives==== | ====Additives==== | ||
In this study, no additives were tested. | In this study, no additives were tested.[[Category:Publication]] | ||
Latest revision as of 10:37, 11 April 2024
Abstract[edit | edit source]
Summary[edit | edit source]
A photochemical reduction of CO2 to formic acid was shown using the ruthenium pincer complexes Ru(py)-(HNdpp)2(CO)2Cl and Ru(py)-(MeNdpp)2(CO)2Cl as catalyst in combination with the ruthenium-based photosensitizer [Ru(bpy)3][PF6]. Turnover numbers (TONs) of 380 for formic acid were reached in dimethylformamide with complex Ru(py)-(MeNdpp)2(CO)2Cl. The experiments were conducted under visible-light irradiation (λ = 405 nm) using TEOA as sacrificial electron donor (see section SEDs below).
Advances and special progress[edit | edit source]
The authors report a novel molecular architecture for a ruthenium photocatalyst active in the reduction of CO2 to formic acid, displaying competitive TONs and quantum yields up to 14%.
Additional remarks[edit | edit source]
Content of the published article in detail[edit | edit source]
The article contains results for the reduction of CO2 to formic acid under visible-light catalysis using ruthenium complexes as catalysts. The catalytic system performs best (referring to the TON of formic acid production) with complex Ru(py)-(MeNdpp)2(CO)2Cl in dimethylformamide.
Catalyst[edit | edit source]
Photosensitizer[edit | edit source]
Investigation[edit | edit source]
cat | cat conc [µM] | PS | PS conc [mM] | e-D | solvent A | . | λexc [nm] | . | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.025 | 0.025 | 405 | 380 | ||||||||
2. | 0.05 | 0.05 | 405 | 210 | ||||||||
3. | 0.1 | 0.1 | 405 | 57.5 | 363 | |||||||
4. | 0.5 | 1 | 405 | 14 | 162 | |||||||
5. | 1 | 1 | 405 | 13.3 | 90.5 | |||||||
6. | 0.5 | 1 | 405 | 14 | 70.5 | |||||||
7. | 1 | 1 | 405 | 12 | 44.5 | |||||||
8. | 2 | 1 | 405 | 9.3 | 41.5 |
Sacrificial electron donor[edit | edit source]
In this study, the experiments were done with the sacrificial electron donors TEOA (100507).
Additives[edit | edit source]
In this study, no additives were tested.
Investigations
- Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)