Visible-Light Photocatalytic Reduction of CO2 to Formic Acid with a Ru Catalyst Supported by N,N’- Bis(diphenylphosphino)-2,6-diaminopyridine Ligands: Difference between revisions

From ChemWiki
publication
About
DOI 10.1002/cssc.201901326
Authors Yasmeen Hameed, Gyandshwar Kumar Rao, Jeffrey S. Ovens, Bulat Gabidullin, Darrin Richeson,
Submitted 11.06.2019
Published online 03.07.2019
Licenses http://onlinelibrary.wiley.com/termsAndConditions#vor, http://doi.wiley.com/10.1002/tdm_license_1.1,
Subjects General Energy, General Materials Science, General Chemical Engineering, Environmental Chemistry
Go to literature page
No edit summary
m (added Publication category)
 
(15 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{#doiinfobox: 10.1002/cssc.201901326}}
{{DOI|doi=10.1002/cssc.201901326}}
[[Category:Photocatalytic CO2 conversion to HCOOH]]
[[Category:Photocatalytic CO2 conversion to HCOOH]]
===Abstract===
====Summary====
A photochemical reduction of CO<sub>2</sub> to formic acid was shown using the ruthenium pincer complexes {{#moleculelink: |link=RQVVTEHURKEOIA-UHFFFAOYSA-M|image=false|width=300|height=200}} and {{#moleculelink: |link=XNTONGVEYKVCNE-UHFFFAOYSA-M|image=false|width=300|height=200}} as catalyst in combination with the ruthenium-based photosensitizer {{#moleculelink:|link=KLDYQWXVZLHTKT-UHFFFAOYSA-N|image=false|width=300|height=200}}. Turnover numbers (TONs) of 380 for formic acid were reached in dimethylformamide with complex {{#moleculelink: |link=XNTONGVEYKVCNE-UHFFFAOYSA-M|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ = 405 nm) using TEOA as sacrificial electron donor (see section SEDs below).
====Advances and special progress====
The authors report a novel molecular architecture for a ruthenium photocatalyst active in the reduction of CO<sub>2</sub> to formic acid, displaying competitive TONs and quantum yields up to 14%.


====Additional remarks====
===Content of the published article in detail===
The article contains results for the reduction of CO<sub>2</sub> to formic acid under visible-light catalysis using ruthenium complexes as catalysts. The catalytic system performs best (referring to the TON of formic acid production) with complex {{#moleculelink: |link=XNTONGVEYKVCNE-UHFFFAOYSA-M|image=false|width=300|height=200}} in dimethylformamide.
==== Catalyst====
==== Catalyst====
<chemform smiles="C1C2N([*])P([Ru+]3(P(C4C=CC=CC=4)(C4C=CC=CC=4)N([*])C(N=23)=CC=1)(~Cl)([C-]#[O+])[C-]#[O+])(C1C=CC=CC=1)C1C=CC=CC=1.[Cl-]" inchi="" inchikey="" height="200px" width="300px" float="none" r1="H,Me">
<chemform smiles="C1C2N([*])P(C3C=CC=CC=3)(C3C=CC=CC=3)[Ru+]([C-]#[O+])([C-]#[O+])3P(C4C=CC=CC=4)(C4C=CC=CC=4)N([*])C(N=23)=CC=1.[Cl-]" inchikey="" inchi="" float="none" width="200" height="200" r1="H,Me">
   -INDIGO-07122316072D
   -INDIGO-01112413302D


   0  0  0  0  0  0  0  0  0  0  0 V3000
   0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 BEGIN CTAB
M  V30 COUNTS 43 48 4 0 0
M  V30 COUNTS 42 47 0 0 0
M  V30 BEGIN ATOM
M  V30 BEGIN ATOM
M  V30 1 C 7.95985 -2.27507 0.0 0
M  V30 1 Cl 10.925 -1.975 0.0 0 CHG=-1
M  V30 2 C 9.69015 -2.27459 0.0 0
M  V30 2 C 7.95985 -2.27507 0.0 0
M  V30 3 C 8.82664 -1.77497 0.0 0
M  V30 3 C 9.69015 -2.27459 0.0 0
M  V30 4 C 9.69015 -3.27553 0.0 0
M  V30 4 C 8.82664 -1.77497 0.0 0
M  V30 5 C 7.95985 -3.28002 0.0 0
M  V30 5 C 9.69015 -3.27553 0.0 0
M  V30 6 N 8.82882 -3.77503 0.0 0
M  V30 6 C 7.95985 -3.28002 0.0 0
M  V30 7 N 7.09528 -3.78253 0.0 0
M  V30 7 N 8.82882 -3.77503 0.0 0
M  V30 8 N 10.5567 -3.7747 0.0 0
M  V30 8 N 7.09528 -3.78253 0.0 0
M  V30 9 P 7.09528 -4.78253 0.0 0
M  V30 9 N 10.5567 -3.7747 0.0 0
M  V30 10 P 10.5567 -4.7747 0.0 0
M  V30 10 P 7.09528 -4.78253 0.0 0
M  V30 11 R# 11.4227 -3.2747 0.0 0 RGROUPS=(1 1)
M  V30 11 P 10.5567 -4.7747 0.0 0
M  V30 12 R# 6.22925 -3.28253 0.0 0 RGROUPS=(1 1)
M  V30 12 R# 11.4227 -3.2747 0.0 0 RGROUPS=(1 1)
M  V30 13 C 6.09528 -4.78253 0.0 0
M  V30 13 R# 6.22925 -3.28253 0.0 0 RGROUPS=(1 1)
M  V30 14 C 6.38817 -5.48963 0.0 0
M  V30 14 Ru 8.825 -4.85 0.0 0 CHG=1
M  V30 15 C 11.2638 -5.48181 0.0 0
M  V30 15 C 11.5226 -4.51588 0.0 0
M  V30 16 C 11.5567 -4.7747 0.0 0
M  V30 16 C 6.12935 -4.52371 0.0 0
M  V30 17 Ru 8.825 -4.85 0.0 0 CHG=1
M  V30 17 C 12.745 -3.29121 0.0 0
M  V30 18 C 8.325 -5.71603 0.0 0 CHG=-1
M  V30 18 C 11.7813 -3.54917 0.0 0
M  V30 19 C 9.325 -5.71603 0.0 0 CHG=-1
M  V30 19 C 13.4532 -3.99851 0.0 0
M  V30 20 Cl 9.53211 -4.14289 0.0 0
M  V30 20 C 12.2337 -5.22601 0.0 0
M  V30 21 O 7.7 -6.69103 0.0 0 CHG=1
M  V30 21 C 13.198 -4.96093 0.0 0
M  V30 22 O 10.025 -6.69103 0.0 0 CHG=1
M  V30 22 C 4.45844 -4.97313 0.0 0
M  V30 23 C 12.231 -5.22465 0.0 0
M  V30 23 C 5.42201 -5.23159 0.0 0
M  V30 24 C 12.9351 -5.92876 0.0 0
M  V30 24 C 4.19873 -4.00647 0.0 0
M  V30 25 C 12.6799 -6.89577 0.0 0
M  V30 25 C 5.8686 -3.55318 0.0 0
M  V30 26 C 11.7088 -7.15396 0.0 0
M  V30 26 C 4.90095 -3.30059 0.0 0
M  V30 27 C 11.0028 -6.44474 0.0 0
M  V30 27 C 6.59528 -5.64856 0.0 0
M  V30 28 C 12.0588 -3.9089 0.0 0
M  V30 28 C 6.59693 -7.37886 0.0 0
M  V30 29 C 13.0545 -3.90893 0.0 0
M  V30 29 C 7.09597 -6.51501 0.0 0
M  V30 30 C 13.5579 -4.77313 0.0 0
M  V30 30 C 5.59598 -7.37953 0.0 0
M  V30 31 C 13.0538 -5.64238 0.0 0
M  V30 31 C 5.59033 -5.64923 0.0 0
M  V30 32 C 12.053 -5.64015 0.0 0
M  V30 32 C 5.0959 -6.51853 0.0 0
M  V30 33 C 5.59316 -5.64832 0.0 0
M  V30 33 C 11.0567 -5.64073 0.0 0
M  V30 34 C 4.59742 -5.6483 0.0 0
M  V30 34 C 12.556 -6.50445 0.0 0
M  V30 35 C 4.09405 -4.78409 0.0 0
M  V30 35 C 12.0574 -5.64034 0.0 0
M  V30 36 C 4.59818 -3.91484 0.0 0
M  V30 36 C 12.0561 -7.37163 0.0 0
M  V30 37 C 5.59893 -3.91708 0.0 0
M  V30 37 C 10.5548 -6.51137 0.0 0
M  V30 38 C 6.64533 -6.4569 0.0 0
M  V30 38 C 11.0604 -7.37421 0.0 0
M  V30 39 C 5.94122 -7.16097 0.0 0
M  V30 39 C 8.225 -5.96603 0.0 0 CHG=-1
M  V30 40 C 4.9742 -6.90582 0.0 0
M  V30 40 C 9.45 -5.96603 0.0 0 CHG=-1
M  V30 41 C 4.71601 -5.9347 0.0 0
M  V30 41 O 7.725 -6.83205 0.0 0 CHG=1
M  V30 42 C 5.42523 -5.22864 0.0 0
M  V30 42 O 9.95 -6.83205 0.0 0 CHG=1
M  V30 43 Cl 12.15 -2.15 0.0 0 CHG=-1
M  V30 END ATOM
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 BEGIN BOND
M  V30 1 2 3 1
M  V30 1 2 4 2
M  V30 2 2 4 2
M  V30 2 2 5 3
M  V30 3 1 1 5
M  V30 3 1 2 6
M  V30 4 1 2 3
M  V30 4 1 3 4
M  V30 5 2 5 6
M  V30 5 2 6 7
M  V30 6 1 6 4
M  V30 6 1 7 5
M  V30 7 1 5 7
M  V30 7 1 6 8
M  V30 8 1 4 8
M  V30 8 1 5 9
M  V30 9 1 7 9
M  V30 9 1 8 10
M  V30 10 1 8 10
M  V30 10 1 9 11
M  V30 11 1 8 11
M  V30 11 1 9 12
M  V30 12 1 7 12
M  V30 12 1 8 13
M  V30 13 1 9 13
M  V30 13 10 10 14
M  V30 14 1 9 14
M  V30 14 10 7 14
M  V30 15 1 10 15
M  V30 15 10 11 14
M  V30 16 1 10 16
M  V30 16 1 11 15
M  V30 17 10 17 18
M  V30 17 1 10 16
M  V30 18 10 17 19
M  V30 18 2 18 15
M  V30 19 8 17 20
M  V30 19 2 19 17
M  V30 20 3 18 21
M  V30 20 1 15 20
M  V30 21 3 19 22
M  V30 21 1 17 18
M  V30 22 10 9 17
M  V30 22 2 20 21
M  V30 23 10 6 17
M  V30 23 1 21 19
M  V30 24 10 10 17
M  V30 24 2 23 16
M  V30 25 2 23 15
M  V30 25 2 24 22
M  V30 26 1 24 23
M  V30 26 1 16 25
M  V30 27 2 25 24
M  V30 27 1 22 23
M  V30 28 1 26 25
M  V30 28 2 25 26
M  V30 29 2 27 26
M  V30 29 1 26 24
M  V30 30 1 15 27
M  V30 30 1 10 27
M  V30 31 2 28 16
M  V30 31 2 29 27
M  V30 32 1 29 28
M  V30 32 2 30 28
M  V30 33 2 30 29
M  V30 33 1 27 31
M  V30 34 1 31 30
M  V30 34 1 28 29
M  V30 35 2 32 31
M  V30 35 2 31 32
M  V30 36 1 16 32
M  V30 36 1 32 30
M  V30 37 2 33 13
M  V30 37 1 11 33
M  V30 38 1 34 33
M  V30 38 2 35 33
M  V30 39 2 35 34
M  V30 39 2 36 34
M  V30 40 1 36 35
M  V30 40 1 33 37
M  V30 41 2 37 36
M  V30 41 1 34 35
M  V30 42 1 13 37
M  V30 42 2 37 38
M  V30 43 2 38 14
M  V30 43 1 38 36
M  V30 44 1 39 38
M  V30 44 10 14 39
M  V30 45 2 40 39
M  V30 45 10 14 40
M  V30 46 1 41 40
M  V30 46 3 39 41
M  V30 47 2 42 41
M  V30 47 3 40 42
M  V30 48 1 14 42
M  V30 END BOND
M  V30 END BOND
M  V30 BEGIN SGROUP
M  V30 1 SUP 1 ATOMS=(6 15 23 24 25 26 27) BRKXYZ=(9 0.000000 0.000000 0.0000-
M  V30 00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000) BRKXYZ=(9 0.-
M  V30 000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -
M  V30 0.000000) LABEL=Ph
M  V30 2 SUP 2 ATOMS=(6 16 28 29 30 31 32) BRKXYZ=(9 0.000000 0.000000 0.0000-
M  V30 00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000) BRKXYZ=(9 0.-
M  V30 000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -
M  V30 0.000000) LABEL=Ph
M  V30 3 SUP 3 ATOMS=(6 13 33 34 35 36 37) BRKXYZ=(9 0.000000 0.000000 0.0000-
M  V30 00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000) BRKXYZ=(9 0.-
M  V30 000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -
M  V30 0.000000) LABEL=Ph
M  V30 4 SUP 4 ATOMS=(6 14 38 39 40 41 42) BRKXYZ=(9 0.000000 0.000000 0.0000-
M  V30 00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000) BRKXYZ=(9 0.-
M  V30 000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -
M  V30 0.000000) LABEL=Ph
M  V30 END SGROUP
M  V30 END CTAB
M  V30 END CTAB
M  END
M  END
Line 251: Line 239:
====Investigation====
====Investigation====
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}}
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}}
 
==== Sacrificial electron donor ====
====Sacrificial electron donor====
In this study, the experiments were done with the sacrificial electron donors TEOA ([[Molecule:100507|100507]]).
{{#moleculelink:|link=GSEJCLTVZPLZKY-UHFFFAOYSA-N|image=true}}
====Additives====
In this study, no additives were tested.[[Category:Publication]]

Latest revision as of 10:37, 11 April 2024

Abstract[edit | edit source]

Summary[edit | edit source]

A photochemical reduction of CO2 to formic acid was shown using the ruthenium pincer complexes Ru(py)-(HNdpp)2(CO)2Cl and Ru(py)-(MeNdpp)2(CO)2Cl as catalyst in combination with the ruthenium-based photosensitizer [Ru(bpy)3][PF6]. Turnover numbers (TONs) of 380 for formic acid were reached in dimethylformamide with complex Ru(py)-(MeNdpp)2(CO)2Cl. The experiments were conducted under visible-light irradiation (λ = 405 nm) using TEOA as sacrificial electron donor (see section SEDs below).

Advances and special progress[edit | edit source]

The authors report a novel molecular architecture for a ruthenium photocatalyst active in the reduction of CO2 to formic acid, displaying competitive TONs and quantum yields up to 14%.

Additional remarks[edit | edit source]

Content of the published article in detail[edit | edit source]

The article contains results for the reduction of CO2 to formic acid under visible-light catalysis using ruthenium complexes as catalysts. The catalytic system performs best (referring to the TON of formic acid production) with complex Ru(py)-(MeNdpp)2(CO)2Cl in dimethylformamide.

Catalyst[edit | edit source]

100772 [Show R-Groups]

Photosensitizer[edit | edit source]

[Ru(bpy)3][PF6]

Investigation[edit | edit source]

Investigation-Name: Table 1

Sacrificial electron donor[edit | edit source]

In this study, the experiments were done with the sacrificial electron donors TEOA (100507).

Additives[edit | edit source]

In this study, no additives were tested.

Investigations

  • Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)