Visible-Light Photocatalytic Reduction of CO2 to Formic Acid with a Ru Catalyst Supported by N,N’- Bis(diphenylphosphino)-2,6-diaminopyridine Ligands: Difference between revisions
About |
---|
No edit summary |
m (added Publication category) |
||
(15 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{DOI|doi=10.1002/cssc.201901326}} | ||
[[Category:Photocatalytic CO2 conversion to HCOOH]] | [[Category:Photocatalytic CO2 conversion to HCOOH]] | ||
===Abstract=== | |||
====Summary==== | |||
A photochemical reduction of CO<sub>2</sub> to formic acid was shown using the ruthenium pincer complexes {{#moleculelink: |link=RQVVTEHURKEOIA-UHFFFAOYSA-M|image=false|width=300|height=200}} and {{#moleculelink: |link=XNTONGVEYKVCNE-UHFFFAOYSA-M|image=false|width=300|height=200}} as catalyst in combination with the ruthenium-based photosensitizer {{#moleculelink:|link=KLDYQWXVZLHTKT-UHFFFAOYSA-N|image=false|width=300|height=200}}. Turnover numbers (TONs) of 380 for formic acid were reached in dimethylformamide with complex {{#moleculelink: |link=XNTONGVEYKVCNE-UHFFFAOYSA-M|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ = 405 nm) using TEOA as sacrificial electron donor (see section SEDs below). | |||
====Advances and special progress==== | |||
The authors report a novel molecular architecture for a ruthenium photocatalyst active in the reduction of CO<sub>2</sub> to formic acid, displaying competitive TONs and quantum yields up to 14%. | |||
====Additional remarks==== | |||
===Content of the published article in detail=== | |||
The article contains results for the reduction of CO<sub>2</sub> to formic acid under visible-light catalysis using ruthenium complexes as catalysts. The catalytic system performs best (referring to the TON of formic acid production) with complex {{#moleculelink: |link=XNTONGVEYKVCNE-UHFFFAOYSA-M|image=false|width=300|height=200}} in dimethylformamide. | |||
==== Catalyst==== | ==== Catalyst==== | ||
<chemform smiles="C1C2N([*])P( | <chemform smiles="C1C2N([*])P(C3C=CC=CC=3)(C3C=CC=CC=3)[Ru+]([C-]#[O+])([C-]#[O+])3P(C4C=CC=CC=4)(C4C=CC=CC=4)N([*])C(N=23)=CC=1.[Cl-]" inchikey="" inchi="" float="none" width="200" height="200" r1="H,Me"> | ||
-INDIGO- | -INDIGO-01112413302D | ||
0 0 0 0 0 0 0 0 0 0 0 V3000 | 0 0 0 0 0 0 0 0 0 0 0 V3000 | ||
M V30 BEGIN CTAB | M V30 BEGIN CTAB | ||
M V30 COUNTS | M V30 COUNTS 42 47 0 0 0 | ||
M V30 BEGIN ATOM | M V30 BEGIN ATOM | ||
M V30 1 C 7.95985 -2.27507 0.0 0 | M V30 1 Cl 10.925 -1.975 0.0 0 CHG=-1 | ||
M V30 | M V30 2 C 7.95985 -2.27507 0.0 0 | ||
M V30 | M V30 3 C 9.69015 -2.27459 0.0 0 | ||
M V30 | M V30 4 C 8.82664 -1.77497 0.0 0 | ||
M V30 | M V30 5 C 9.69015 -3.27553 0.0 0 | ||
M V30 | M V30 6 C 7.95985 -3.28002 0.0 0 | ||
M V30 | M V30 7 N 8.82882 -3.77503 0.0 0 | ||
M V30 | M V30 8 N 7.09528 -3.78253 0.0 0 | ||
M V30 | M V30 9 N 10.5567 -3.7747 0.0 0 | ||
M V30 | M V30 10 P 7.09528 -4.78253 0.0 0 | ||
M V30 | M V30 11 P 10.5567 -4.7747 0.0 0 | ||
M V30 | M V30 12 R# 11.4227 -3.2747 0.0 0 RGROUPS=(1 1) | ||
M V30 | M V30 13 R# 6.22925 -3.28253 0.0 0 RGROUPS=(1 1) | ||
M V30 14 Ru 8.825 -4.85 0.0 0 CHG=1 | |||
M V30 15 C 11. | M V30 15 C 11.5226 -4.51588 0.0 0 | ||
M V30 16 C | M V30 16 C 6.12935 -4.52371 0.0 0 | ||
M V30 17 | M V30 17 C 12.745 -3.29121 0.0 0 | ||
M V30 18 C | M V30 18 C 11.7813 -3.54917 0.0 0 | ||
M V30 19 C | M V30 19 C 13.4532 -3.99851 0.0 0 | ||
M V30 20 | M V30 20 C 12.2337 -5.22601 0.0 0 | ||
M V30 21 | M V30 21 C 13.198 -4.96093 0.0 0 | ||
M V30 22 | M V30 22 C 4.45844 -4.97313 0.0 0 | ||
M V30 23 C | M V30 23 C 5.42201 -5.23159 0.0 0 | ||
M V30 24 C | M V30 24 C 4.19873 -4.00647 0.0 0 | ||
M V30 25 C | M V30 25 C 5.8686 -3.55318 0.0 0 | ||
M V30 26 C | M V30 26 C 4.90095 -3.30059 0.0 0 | ||
M V30 27 C | M V30 27 C 6.59528 -5.64856 0.0 0 | ||
M V30 28 C | M V30 28 C 6.59693 -7.37886 0.0 0 | ||
M V30 29 C | M V30 29 C 7.09597 -6.51501 0.0 0 | ||
M V30 30 C | M V30 30 C 5.59598 -7.37953 0.0 0 | ||
M V30 31 C | M V30 31 C 5.59033 -5.64923 0.0 0 | ||
M V30 32 C | M V30 32 C 5.0959 -6.51853 0.0 0 | ||
M V30 33 C | M V30 33 C 11.0567 -5.64073 0.0 0 | ||
M V30 34 C | M V30 34 C 12.556 -6.50445 0.0 0 | ||
M V30 35 C | M V30 35 C 12.0574 -5.64034 0.0 0 | ||
M V30 36 C | M V30 36 C 12.0561 -7.37163 0.0 0 | ||
M V30 37 C | M V30 37 C 10.5548 -6.51137 0.0 0 | ||
M V30 38 C | M V30 38 C 11.0604 -7.37421 0.0 0 | ||
M V30 39 C | M V30 39 C 8.225 -5.96603 0.0 0 CHG=-1 | ||
M V30 40 C | M V30 40 C 9.45 -5.96603 0.0 0 CHG=-1 | ||
M V30 41 | M V30 41 O 7.725 -6.83205 0.0 0 CHG=1 | ||
M V30 42 | M V30 42 O 9.95 -6.83205 0.0 0 CHG=1 | ||
M V30 END ATOM | M V30 END ATOM | ||
M V30 BEGIN BOND | M V30 BEGIN BOND | ||
M V30 1 2 | M V30 1 2 4 2 | ||
M V30 2 2 | M V30 2 2 5 3 | ||
M V30 3 1 | M V30 3 1 2 6 | ||
M V30 4 1 | M V30 4 1 3 4 | ||
M V30 5 2 | M V30 5 2 6 7 | ||
M V30 6 1 | M V30 6 1 7 5 | ||
M V30 7 1 | M V30 7 1 6 8 | ||
M V30 8 1 | M V30 8 1 5 9 | ||
M V30 9 1 | M V30 9 1 8 10 | ||
M V30 10 1 | M V30 10 1 9 11 | ||
M V30 11 1 | M V30 11 1 9 12 | ||
M V30 12 1 | M V30 12 1 8 13 | ||
M V30 13 | M V30 13 10 10 14 | ||
M V30 14 | M V30 14 10 7 14 | ||
M V30 15 | M V30 15 10 11 14 | ||
M V30 16 1 | M V30 16 1 11 15 | ||
M V30 17 10 | M V30 17 1 10 16 | ||
M V30 18 | M V30 18 2 18 15 | ||
M V30 19 | M V30 19 2 19 17 | ||
M V30 20 | M V30 20 1 15 20 | ||
M V30 21 | M V30 21 1 17 18 | ||
M V30 22 | M V30 22 2 20 21 | ||
M V30 23 | M V30 23 1 21 19 | ||
M V30 24 | M V30 24 2 23 16 | ||
M V30 25 2 | M V30 25 2 24 22 | ||
M V30 26 1 | M V30 26 1 16 25 | ||
M V30 27 | M V30 27 1 22 23 | ||
M V30 28 | M V30 28 2 25 26 | ||
M V30 29 | M V30 29 1 26 24 | ||
M V30 30 1 | M V30 30 1 10 27 | ||
M V30 31 2 | M V30 31 2 29 27 | ||
M V30 32 | M V30 32 2 30 28 | ||
M V30 33 | M V30 33 1 27 31 | ||
M V30 34 1 | M V30 34 1 28 29 | ||
M V30 35 2 32 | M V30 35 2 31 32 | ||
M V30 36 1 | M V30 36 1 32 30 | ||
M V30 37 | M V30 37 1 11 33 | ||
M V30 38 | M V30 38 2 35 33 | ||
M V30 39 2 | M V30 39 2 36 34 | ||
M V30 40 1 | M V30 40 1 33 37 | ||
M V30 41 | M V30 41 1 34 35 | ||
M V30 42 | M V30 42 2 37 38 | ||
M V30 43 | M V30 43 1 38 36 | ||
M V30 44 | M V30 44 10 14 39 | ||
M V30 45 | M V30 45 10 14 40 | ||
M V30 46 | M V30 46 3 39 41 | ||
M V30 47 | M V30 47 3 40 42 | ||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
Line 251: | Line 239: | ||
====Investigation==== | ====Investigation==== | ||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}} | {{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}} | ||
==== Sacrificial electron donor ==== | |||
====Sacrificial electron donor==== | In this study, the experiments were done with the sacrificial electron donors TEOA ([[Molecule:100507|100507]]). | ||
====Additives==== | |||
In this study, no additives were tested.[[Category:Publication]] |
Latest revision as of 10:37, 11 April 2024
Abstract[edit | edit source]
Summary[edit | edit source]
A photochemical reduction of CO2 to formic acid was shown using the ruthenium pincer complexes Ru(py)-(HNdpp)2(CO)2Cl and Ru(py)-(MeNdpp)2(CO)2Cl as catalyst in combination with the ruthenium-based photosensitizer [Ru(bpy)3][PF6]. Turnover numbers (TONs) of 380 for formic acid were reached in dimethylformamide with complex Ru(py)-(MeNdpp)2(CO)2Cl. The experiments were conducted under visible-light irradiation (λ = 405 nm) using TEOA as sacrificial electron donor (see section SEDs below).
Advances and special progress[edit | edit source]
The authors report a novel molecular architecture for a ruthenium photocatalyst active in the reduction of CO2 to formic acid, displaying competitive TONs and quantum yields up to 14%.
Additional remarks[edit | edit source]
Content of the published article in detail[edit | edit source]
The article contains results for the reduction of CO2 to formic acid under visible-light catalysis using ruthenium complexes as catalysts. The catalytic system performs best (referring to the TON of formic acid production) with complex Ru(py)-(MeNdpp)2(CO)2Cl in dimethylformamide.
Catalyst[edit | edit source]
Photosensitizer[edit | edit source]
Investigation[edit | edit source]
cat | cat conc [µM] | PS | PS conc [mM] | e-D | solvent A | . | λexc [nm] | . | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.025 | 0.025 | 405 | 380 | ||||||||
2. | 0.05 | 0.05 | 405 | 210 | ||||||||
3. | 0.1 | 0.1 | 405 | 57.5 | 363 | |||||||
4. | 0.5 | 1 | 405 | 14 | 162 | |||||||
5. | 1 | 1 | 405 | 13.3 | 90.5 | |||||||
6. | 0.5 | 1 | 405 | 14 | 70.5 | |||||||
7. | 1 | 1 | 405 | 12 | 44.5 | |||||||
8. | 2 | 1 | 405 | 9.3 | 41.5 |
Sacrificial electron donor[edit | edit source]
In this study, the experiments were done with the sacrificial electron donors TEOA (100507).
Additives[edit | edit source]
In this study, no additives were tested.
Investigations
- Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)