Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO2 Photoreduction: Difference between revisions
About |
---|
(auto-generated) |
m (added Publication category) |
||
(8 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{BaseTemplate}} | {{BaseTemplate}} | ||
{{ | {{DOI|doi=10.1002/anie.201809084}} | ||
===Abstract=== | |||
====Summary==== | |||
A photochemical reduction of CO<sub>2</sub> to formic acid or CO was shown using the novel dithiolene molybdenum complexes {{#moleculelink:|link=ZANCFLAGIYSVGM-UHFFFAOYSA-J|image=false|width=300|height=200}} and {{#moleculelink:|link=NXVSQECHHKIDOQ-UHFFFAOYSA-J|image=false|width=300|height=200}} in comparison to the previously reported complex {{#moleculelink:|link=SZEIOHNZAHLTPQ-UHFFFAOYSA-J|image=false|width=300|height=200}} as catalysts in combination with photosensitizer {{#moleculelink:|link=SJFYGUKHUNLZTK-UHFFFAOYSA-L|image=false|width=300|height=200}}. Turnover numbers (TONs) of up to 83 for formic acid and 40 for CO were reached in acetonitrile for complex {{#moleculelink:|link=NXVSQECHHKIDOQ-UHFFFAOYSA-J|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ = 400 nm) using BIH and TEOA as sacrificial electron donor (see section SEDs below). | |||
====Advances and special progress==== | |||
Bioinspired dithiolene Mo-complexes as analogues of the active site of the FDH (formate dehydrogenase) were shown to be active as CO<sub>2</sub> photoreduction catalysts with formation of formic acid as the main product. | |||
====Additional remarks==== | |||
The developed complex {{#moleculelink:|link=NXVSQECHHKIDOQ-UHFFFAOYSA-J|image=false|width=300|height=200}} shows a similar TON for formic acid production to the previously synthesized complex {{#moleculelink:|link=SZEIOHNZAHLTPQ-UHFFFAOYSA-J|image=false|width=300|height=200}}, however a strong increase in selectivity is observed. The previously reported complex mainly catalyzes the generation of hydrogen. | |||
===Content of the published article in detail=== | |||
The article contains results for the reduction of CO<sub>2</sub> to CO or formic acid under visible-light catalysis using molybdenum complexes and a ruthenium-based photosensitizer. The catalytic system performs best (referring to the TON of formic acid production) in acetonitrile with complex {{#moleculelink:|link=NXVSQECHHKIDOQ-UHFFFAOYSA-J|image=false|width=300|height=200}}. | |||
==== Catalyst==== | ==== Catalyst==== | ||
<chemform smiles="[Mo-2](=O)1(~SC2C3=NC4C=CC=CC=4N(C)C3OC(C)(C)C=2S~1)1~SC2C(C)(C)OC3N(C)C4C=CC=CC=4N=C3C=2S~1.[K+].[K+]" inchi="1S/2C14H16N2OS2.2K.Mo.O/c2*1-14(2)12(19)11(18)10-13(17-14)16(3)9-7-5-4-6-8(9)15-10;;;;/h2*4-7,13,18-19H,1-3H3;;;;/q;;2*+1;+2;/p-4" inchikey="ZANCFLAGIYSVGM-UHFFFAOYSA-J" height="200px" width="300px" float="none"> | <chemform smiles="[Mo-2](=O)1(~SC2C3=NC4C=CC=CC=4N(C)C3OC(C)(C)C=2S~1)1~SC2C(C)(C)OC3N(C)C4C=CC=CC=4N=C3C=2S~1.[K+].[K+]" inchi="1S/2C14H16N2OS2.2K.Mo.O/c2*1-14(2)12(19)11(18)10-13(17-14)16(3)9-7-5-4-6-8(9)15-10;;;;/h2*4-7,13,18-19H,1-3H3;;;;/q;;2*+1;+2;/p-4" inchikey="ZANCFLAGIYSVGM-UHFFFAOYSA-J" height="200px" width="300px" float="none"> | ||
Line 274: | Line 284: | ||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
</chemform><chemform smiles="[Mo-2](=O)1(~SC2C3=NC4C=CC=CC=4N | </chemform><chemform smiles="[Mo-2](=O)1(~SC2C3=NC4C=CC=CC=4N(C)C3OC(C)(C)C=2S~1)1~SC2C(C)(C)OC3N(C)C4C=CC=CC=4N=C3C=2S~1.[N+](CCCC)(CCCC)(CCCC)CCCC.[N+](CCCC)(CCCC)(CCCC)CCCC" inchikey="SZEIOHNZAHLTPQ-UHFFFAOYSA-J" inchi="1S/2C16H36N.2C14H16N2OS2.Mo.O/c2*1-5-9-13-17(14-10-6-2,15-11-7-3)16-12-8-4;2*1-14(2)12(19)11(18)10-13(17-14)16(3)9-7-5-4-6-8(9)15-10;;/h2*5-16H2,1-4H3;2*4-7,13,18-19H,1-3H3;;/q2*+1;;;+2;/p-4" float="none" width="200" height="200"> | ||
-INDIGO- | -INDIGO-01102415272D | ||
0 0 0 0 0 0 0 0 0 0 0 V3000 | 0 0 0 0 0 0 0 0 0 0 0 V3000 | ||
M V30 BEGIN CTAB | M V30 BEGIN CTAB | ||
M V30 COUNTS | M V30 COUNTS 74 79 0 0 0 | ||
M V30 BEGIN ATOM | M V30 BEGIN ATOM | ||
M V30 1 Mo 8.675 -5.8 0.0 0 CHG=-2 | M V30 1 Mo 8.675 -5.8 0.0 0 CHG=-2 | ||
Line 319: | Line 329: | ||
M V30 37 C 10.6166 -4.06604 0.0 0 | M V30 37 C 10.6166 -4.06604 0.0 0 | ||
M V30 38 O 8.675 -4.8 0.0 0 | M V30 38 O 8.675 -4.8 0.0 0 | ||
M V30 39 | M V30 39 C 13.925 -6.27355 0.0 0 | ||
M V30 40 C | M V30 40 C 3.40218 -5.32419 0.0 0 | ||
M V30 41 | M V30 41 N 16.475 -1.4 0.0 0 CHG=1 | ||
M V30 42 C | M V30 42 C 16.475 -0.4 0.0 0 | ||
M V30 43 C | M V30 43 C 15.475 -1.4 0.0 0 | ||
M V30 44 C | M V30 44 C 17.475 -1.4 0.0 0 | ||
M V30 45 C | M V30 45 C 16.475 -2.4 0.0 0 | ||
M V30 46 C | M V30 46 C 17.341 0.1 0.0 0 | ||
M V30 47 C | M V30 47 C 17.341 1.1 0.0 0 | ||
M V30 48 C | M V30 48 C 18.2071 1.6 0.0 0 | ||
M V30 49 C | M V30 49 C 17.975 -2.26603 0.0 0 | ||
M V30 50 C | M V30 50 C 18.975 -2.26603 0.0 0 | ||
M V30 51 C | M V30 51 C 19.475 -3.13205 0.0 0 | ||
M V30 52 C | M V30 52 C 15.609 -2.9 0.0 0 | ||
M V30 53 C | M V30 53 C 15.609 -3.9 0.0 0 | ||
M V30 54 C | M V30 54 C 14.7429 -4.4 0.0 0 | ||
M V30 55 C | M V30 55 C 14.975 -0.533975 0.0 0 | ||
M V30 56 | M V30 56 C 13.975 -0.533975 0.0 0 | ||
M V30 57 C | M V30 57 C 13.475 0.332051 0.0 0 | ||
M V30 58 | M V30 58 N 19.4 -6.95 0.0 0 CHG=1 | ||
M V30 59 C | M V30 59 C 19.4 -5.95 0.0 0 | ||
M V30 60 C 18. | M V30 60 C 18.4 -6.95 0.0 0 | ||
M V30 61 C | M V30 61 C 20.4 -6.95 0.0 0 | ||
M V30 62 C | M V30 62 C 19.4 -7.95 0.0 0 | ||
M V30 63 C | M V30 63 C 20.266 -5.45 0.0 0 | ||
M V30 64 C | M V30 64 C 20.266 -4.45 0.0 0 | ||
M V30 65 C | M V30 65 C 21.1321 -3.95 0.0 0 | ||
M V30 66 C | M V30 66 C 20.9 -7.81603 0.0 0 | ||
M V30 67 C | M V30 67 C 21.9 -7.81603 0.0 0 | ||
M V30 68 C | M V30 68 C 22.4 -8.68205 0.0 0 | ||
M V30 69 C | M V30 69 C 18.534 -8.45 0.0 0 | ||
M V30 70 C | M V30 70 C 18.534 -9.45 0.0 0 | ||
M V30 71 C | M V30 71 C 17.6679 -9.95 0.0 0 | ||
M V30 72 C | M V30 72 C 17.9 -6.08397 0.0 0 | ||
M V30 73 C 16.9 -6.08397 0.0 0 | |||
M V30 74 C 16.4 -5.21795 0.0 0 | |||
M V30 END ATOM | M V30 END ATOM | ||
M V30 BEGIN BOND | M V30 BEGIN BOND | ||
Line 369: | Line 381: | ||
M V30 13 2 13 14 | M V30 13 2 13 14 | ||
M V30 14 1 14 15 | M V30 14 1 14 15 | ||
M V30 15 | M V30 15 1 15 6 | ||
M V30 16 2 17 16 | M V30 16 2 17 16 | ||
M V30 17 1 13 18 | M V30 17 1 13 18 | ||
Line 387: | Line 399: | ||
M V30 31 2 29 30 | M V30 31 2 29 30 | ||
M V30 32 1 30 31 | M V30 32 1 30 31 | ||
M V30 33 | M V30 33 1 31 22 | ||
M V30 34 2 33 32 | M V30 34 2 33 32 | ||
M V30 35 1 29 34 | M V30 35 1 29 34 | ||
Line 400: | Line 412: | ||
M V30 44 1 3 25 | M V30 44 1 3 25 | ||
M V30 45 2 1 38 | M V30 45 2 1 38 | ||
M V30 46 1 39 | M V30 46 1 31 39 | ||
M V30 47 1 | M V30 47 1 15 40 | ||
M V30 48 1 | M V30 48 1 41 42 | ||
M V30 49 1 | M V30 49 1 41 43 | ||
M V30 50 1 | M V30 50 1 41 44 | ||
M V30 51 1 | M V30 51 1 41 45 | ||
M V30 52 1 | M V30 52 1 42 46 | ||
M V30 53 1 | M V30 53 1 46 47 | ||
M V30 54 1 47 48 | M V30 54 1 47 48 | ||
M V30 55 1 | M V30 55 1 44 49 | ||
M V30 56 1 | M V30 56 1 49 50 | ||
M V30 57 1 50 51 | M V30 57 1 50 51 | ||
M V30 58 1 | M V30 58 1 45 52 | ||
M V30 59 1 | M V30 59 1 52 53 | ||
M V30 60 1 53 54 | M V30 60 1 53 54 | ||
M V30 61 1 | M V30 61 1 43 55 | ||
M V30 62 1 56 | M V30 62 1 55 56 | ||
M V30 63 1 56 | M V30 63 1 56 57 | ||
M V30 64 1 | M V30 64 1 58 59 | ||
M V30 65 1 | M V30 65 1 58 60 | ||
M V30 66 1 | M V30 66 1 58 61 | ||
M V30 67 1 | M V30 67 1 58 62 | ||
M V30 68 1 | M V30 68 1 59 63 | ||
M V30 69 1 | M V30 69 1 63 64 | ||
M V30 70 1 64 65 | M V30 70 1 64 65 | ||
M V30 71 1 | M V30 71 1 61 66 | ||
M V30 72 1 | M V30 72 1 66 67 | ||
M V30 73 1 67 68 | M V30 73 1 67 68 | ||
M V30 74 1 | M V30 74 1 62 69 | ||
M V30 75 1 | M V30 75 1 69 70 | ||
M V30 76 1 70 71 | M V30 76 1 70 71 | ||
M V30 77 1 | M V30 77 1 60 72 | ||
M V30 78 1 72 73 | |||
M V30 79 1 73 74 | |||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
Line 472: | Line 452: | ||
====Photosensitizer==== | ====Photosensitizer==== | ||
<chemform smiles="" inchi="" inchikey="SJFYGUKHUNLZTK-UHFFFAOYSA-L" height="200px" width="300px" float="none"></chemform> | |||
====Investigation==== | ====Investigation==== | ||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}} | {{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}} | ||
====Sacrificial Electron Donor ==== | |||
==== Sacrificial | In this study, the experiments were done with the sacrificial electron donors TEOA ({{#moleculelink:|link=GSEJCLTVZPLZKY-UHFFFAOYSA-N|image=false|width=300|height=200}}) and BIH ({{#moleculelink:|link=VDFIVJSRRJXMAU-UHFFFAOYSA-N|image=false|width=300|height=200}}). | ||
{{#moleculelink:|link= | ====Additives==== | ||
[[Category:Photocatalytic CO2 conversion to HCOOH]] | In this study, no additives were tested. | ||
[[Category:Photocatalytic CO2 conversion to HCOOH]][[Category:Publication]] |
Latest revision as of 10:37, 11 April 2024
Abstract[edit | edit source]
Summary[edit | edit source]
A photochemical reduction of CO2 to formic acid or CO was shown using the novel dithiolene molybdenum complexes [K]2[MoO(Hqpdt)2] and [MoO(2Hqpdt)2][NBu4] in comparison to the previously reported complex [MoO(qpdt)2][NBu4]2 as catalysts in combination with photosensitizer Ru(bpy)3Cl2. Turnover numbers (TONs) of up to 83 for formic acid and 40 for CO were reached in acetonitrile for complex [MoO(2Hqpdt)2][NBu4]. The experiments were conducted under visible-light irradiation (λ = 400 nm) using BIH and TEOA as sacrificial electron donor (see section SEDs below).
Advances and special progress[edit | edit source]
Bioinspired dithiolene Mo-complexes as analogues of the active site of the FDH (formate dehydrogenase) were shown to be active as CO2 photoreduction catalysts with formation of formic acid as the main product.
Additional remarks[edit | edit source]
The developed complex [MoO(2Hqpdt)2][NBu4] shows a similar TON for formic acid production to the previously synthesized complex [MoO(qpdt)2][NBu4]2, however a strong increase in selectivity is observed. The previously reported complex mainly catalyzes the generation of hydrogen.
Content of the published article in detail[edit | edit source]
The article contains results for the reduction of CO2 to CO or formic acid under visible-light catalysis using molybdenum complexes and a ruthenium-based photosensitizer. The catalytic system performs best (referring to the TON of formic acid production) in acetonitrile with complex [MoO(2Hqpdt)2][NBu4].
Catalyst[edit | edit source]
[K]2[MoO(Hqpdt)2] [MoO(2Hqpdt)2][NBu4] [MoO(qpdt)2][NBu4]2
Photosensitizer[edit | edit source]
Investigation[edit | edit source]
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | . | . | . | λexc [nm] | . | TON CO | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.05 | 0.5 | 0.1 | 400 | 73 | 670 | 80 | |||||||||
2. | 0.05 | 0.5 | 0.1 | 400 | 13 | 51 | 31 | |||||||||
3. | 0.05 | 0.5 | 0.1 | 400 | 40 | 89 | 83 |
Sacrificial Electron Donor[edit | edit source]
In this study, the experiments were done with the sacrificial electron donors TEOA (TEOA) and BIH (BIH).
Additives[edit | edit source]
In this study, no additives were tested.
Investigations
- Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)