Highly Efficient and Robust Photocatalytic Systems for CO2 Reduction Consisting of a Cu(I) Photosensitizer and Mn(I) Catalysts: Difference between revisions

From ChemWiki
publication
About
DOI 10.1021/jacs.8b10619
Authors Hiroyuki Takeda, Hiroko Kamiyama, Kouhei Okamoto, Mina Irimajiri, Toshihide Mizutani, Kazuhide Koike, Akiko Sekine, Osamu Ishitani,
Submitted 27.11.2018
Published online 27.11.2018
Licenses http://pubs.acs.org/page/policy/authorchoice_termsofuse.html,
Subjects Colloid and Surface Chemistry, Biochemistry, General Chemistry, Catalysis
Go to literature page
(Swap to Molecule link)
m (added Publication category)
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{#doiinfobox: 10.1021/jacs.8b10619}}
{{DOI|doi=10.1021/jacs.8b10619}}
[[Category:Photocatalytic CO2 conversion to HCOOH]]
[[Category:Photocatalytic CO2 conversion to HCOOH]]
{{BaseTemplate}}
{{BaseTemplate}}


===Abstract===
==== Summary====
A photochemical reduction of CO<sub>2</sub> to CO or formic acid was shown using the manganese complexes {{#moleculelink:|link=ZUZWBGQHMPVNDY-UHFFFAOYSA-M|image=false|width=300|height=200}}, {{#moleculelink:|link=AQJGHJDFPVIJPY-UHFFFAOYSA-M|image=false|width=300|height=200}} or {{#moleculelink:|link=MMWVUSACGPQHBP-UHFFFAOYSA-M|image=false|width=300|height=200}} as catalyst in combination with the copper-based photosensitizer {{#moleculelink:|link=LRXMZDJKCHDVRC-UHFFFAOYSA-N|image=false|width=300|height=200}}. Turnover numbers (TONs) over 1300 for CO were reached in dimethylacetamide/TEOA for complex {{#moleculelink:|link=AQJGHJDFPVIJPY-UHFFFAOYSA-M|image=false|width=300|height=200}}. The highest selectivity for CO (96%) was obtained for catalyst {{#moleculelink:|link=MMWVUSACGPQHBP-UHFFFAOYSA-M|image=false|width=300|height=200}} while catalyst {{#moleculelink:|link=ZUZWBGQHMPVNDY-UHFFFAOYSA-M|image=false|width=300|height=200}} allowed for the reduction of CO<sub>2</sub> to formic acid with a selectivity of 74%. The experiments were conducted under visible-light irradiation (λ = 436 nm) using BIH as sacrificial electron donor (see section SEDs below).
==== Advances and special progress ====
Employing catalyst {{#moleculelink:|link=AQJGHJDFPVIJPY-UHFFFAOYSA-M|image=false|width=300|height=200}}, the highest quantum yield for CO<sub>2</sub> reduction using abundant elements (57%) at that time was achieved. The authors also demonstrated the stability of their catalyst over a 36 h experiment, where it was shown that BIH was the limiting factor, even in large amounts.
==== Additional remarks====
The authors could show that the substituents on the manganese complexes largely influenced the photocatalytic efficiency and product selectivity.
===Content of the published article in detail===
The article contains results for the reduction of CO<sub>2</sub> to CO and formic acid under visible-light catalysis using manganese complexes as catalysts. The catalytic system performs best (referring to the TON of CO production) in DMA/TEOA.
==== Catalyst====
==== Catalyst====
<chemform smiles="C([*])1C=C2C3N([Mn+]([Br-])([C-]#[O+])([C-]#[O+])([C-]#[O+])N2=CC=1)=CC=C([*])C=3" inchi="" inchikey="" height="200px" width="300px" float="none" r1="H,OMe">
<chemform smiles="C([*])1C=C2C3N([Mn+]([Br-])([C-]#[O+])([C-]#[O+])([C-]#[O+])N2=CC=1)=CC=C([*])C=3" inchi="" inchikey="" height="200px" width="300px" float="none" r1="H,OMe">
Line 62: Line 73:
M  V30 END CTAB
M  V30 END CTAB
M  END
M  END
</chemform><chemform smiles="C1C=C2C3C=CC=C(C4C(C)=CC(C)=CC=4C)N=3[Mn](C#O)(C#O)(~Br)N2=C(C2C(C)=CC(C)=CC=2C)C=1" inchi="1S/C28H28N2.2CHO.BrH.Mn/c1-17-13-19(3)27(20(4)14-17)25-11-7-9-23(29-25)24-10-8-12-26(30-24)28-21(5)15-18(2)16-22(28)6;2*1-2;;/h7-16H,1-6H3;2*1H;1H;/q;;;;+1/p-1" inchikey="LAJRVYLSNAAJQU-UHFFFAOYSA-M" height="200px" width="300px" float="none">
</chemform><chemform smiles="C1C=C2C3C=CC=C(C4C(C)=CC(C)=CC=4C)N=3[Mn+]([C-]#[O+])([C-]#[O+])([Br-])N2=C(C2C(C)=CC(C)=CC=2C)C=1" inchikey="MMWVUSACGPQHBP-UHFFFAOYSA-M" inchi="1S/C28H28N2.2CO.BrH.Mn/c1-17-13-19(3)27(20(4)14-17)25-11-7-9-23(29-25)24-10-8-12-26(30-24)28-21(5)15-18(2)16-22(28)6;2*1-2;;/h7-16H,1-6H3;;;1H;/q;;;;+1/p-1" float="none" width="200" height="200">
   -INDIGO-03102311002D
   -INDIGO-01102416202D


   0  0  0  0  0  0  0  0  0  0  0 V3000
   0  0  0  0  0  0  0  0  0  0  0 V3000
Line 99: Line 110:
M  V30 29 C 6.47682 -8.98054 0.0 0
M  V30 29 C 6.47682 -8.98054 0.0 0
M  V30 30 C 9.93819 -8.97039 0.0 0
M  V30 30 C 9.93819 -8.97039 0.0 0
M  V30 31 Mn 7.7 -4.95 0.0 0
M  V30 31 Mn 9.55 -5.025 0.0 0 CHG=1
M  V30 32 Br 7.7 -3.95 0.0 0
M  V30 32 Br 9.55 -3.675 0.0 0 CHG=-1
M  V30 33 C 8.56603 -4.45 0.0 0
M  V30 33 C 10.741 -4.3 0.0 0 CHG=-1
M  V30 34 C 8.56603 -5.45 0.0 0
M  V30 34 C 10.741 -5.75 0.0 0 CHG=-1
M  V30 35 O 9.43205 -3.95 0.0 0
M  V30 35 O 11.607 -3.8 0.0 0 CHG=1
M  V30 36 O 9.43205 -5.95 0.0 0
M  V30 36 O 11.607 -6.25 0.0 0 CHG=1
M  V30 END ATOM
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 BEGIN BOND
Line 142: Line 153:
M  V30 34 10 4 31
M  V30 34 10 4 31
M  V30 35 10 9 31
M  V30 35 10 9 31
M  V30 36 8 31 32
M  V30 36 10 31 32
M  V30 37 10 31 33
M  V30 37 10 31 33
M  V30 38 10 31 34
M  V30 38 10 31 34
Line 153: Line 164:


====Photosensitizer ====
====Photosensitizer ====
<chemform smiles="C(C1C=CC=CC=1)1C2C=CC3C(C4C=CC=CC=4)=CC4CCCCP(C5C=CC=CC=5)(C5C=CC=CC=5)[Cu]56N7C8C9N5=C(CCCCP6(C5C=CC=CC=5)C5C=CC=CC=5)C=C(C5C=CC=CC=5)C=9C=CC=8C(C5C=CC=CC=5)=CC=7CCCCP(C5C=CC=CC=5)(C5C=CC=CC=5)[Cu]56P(C7C=CC=CC=7)(C7C=CC=CC=7)CCCCC(C=1)=N5C=2C=3N=46" inchi="1S/2C56H50N2P2.2Cu/c2*1-7-23-43(24-8-1)53-41-45(27-19-21-39-59(47-29-11-3-12-30-47)48-31-13-4-14-32-48)57-55-51(53)37-38-52-54(44-25-9-2-10-26-44)42-46(58-56(52)55)28-20-22-40-60(49-33-15-5-16-34-49)50-35-17-6-18-36-50;;/h2*1-18,23-26,29-38,41-42H,19-22,27-28,39-40H2;;" inchikey="LDRCBPXXVZRETI-UHFFFAOYSA-N" height="200px" width="300px" float="none">
<chemform smiles="C(C1C=CC=CC=1)1C2C=CC3C(C4C=CC=CC=4)=CC4CCCCP(C5C=CC=CC=5)(C5C=CC=CC=5)[Cu+]56N7C8C9N5=C(CCCCP6(C5C=CC=CC=5)C5C=CC=CC=5)C=C(C5C=CC=CC=5)C=9C=CC=8C(C5C=CC=CC=5)=CC=7CCCCP(C5C=CC=CC=5)(C5C=CC=CC=5)[Cu+]56P(C7C=CC=CC=7)(C7C=CC=CC=7)CCCCC(C=1)=N5C=2C=3N=46.F[P-](F)(F)(F)(F)F.F[P-](F)(F)(F)(F)F" inchi="1S/2C56H50N2P2.2Cu.2F6P/c2*1-7-23-43(24-8-1)53-41-45(27-19-21-39-59(47-29-11-3-12-30-47)48-31-13-4-14-32-48)57-55-51(53)37-38-52-54(44-25-9-2-10-26-44)42-46(58-56(52)55)28-20-22-40-60(49-33-15-5-16-34-49)50-35-17-6-18-36-50;;;2*1-7(2,3,4,5)6/h2*1-18,23-26,29-38,41-42H,19-22,27-28,39-40H2;;;;/q;;2*+1;2*-1" inchikey="LRXMZDJKCHDVRC-UHFFFAOYSA-N" height="200px" width="300px" float="none">
   -INDIGO-03312316052D
   -INDIGO-11282314582D


   0  0  0  0  0  0  0  0  0  0  0 V3000
   0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 BEGIN CTAB
M  V30 COUNTS 122 144 0 0 0
M  V30 COUNTS 136 156 0 0 0
M  V30 BEGIN ATOM
M  V30 BEGIN ATOM
M  V30 1 C 3.88485 -2.97507 0.0 0
M  V30 1 C 3.88485 -2.97507 0.0 0
Line 212: Line 223:
M  V30 51 C 3.01815 -1.47013 0.0 0
M  V30 51 C 3.01815 -1.47013 0.0 0
M  V30 52 C 2.14885 -0.975699 0.0 0
M  V30 52 C 2.14885 -0.975699 0.0 0
M  V30 53 Cu 7.35 -5.075 0.0 0
M  V30 53 Cu 7.35 -5.075 0.0 0 CHG=1
M  V30 54 Cu 12.175 -6.8 0.0 0
M  V30 54 Cu 12.175 -6.8 0.0 0 CHG=1
M  V30 55 P 10.925 -7.925 0.0 0
M  V30 55 P 10.925 -7.925 0.0 0
M  V30 56 P 8.925 -6.875 0.0 0
M  V30 56 P 8.925 -6.875 0.0 0
Line 282: Line 293:
M  V30 121 C 9.41815 -0.173926 0.0 0
M  V30 121 C 9.41815 -0.173926 0.0 0
M  V30 122 C 9.41169 0.826128 0.0 0
M  V30 122 C 9.41169 0.826128 0.0 0
M  V30 123 F 18.1295 -1.33125 0.0 0
M  V30 124 P 18.9955 -0.83125 0.0 0 CHG=-1
M  V30 125 F 19.8615 -1.33125 0.0 0
M  V30 126 F 18.9955 0.16875 0.0 0
M  V30 127 F 19.8615 -0.33125 0.0 0
M  V30 128 F 18.9955 -1.83125 0.0 0
M  V30 129 F 18.1295 -0.33125 0.0 0
M  V30 130 F 19.134 -4.3625 0.0 0
M  V30 131 P 20.0 -3.8625 0.0 0 CHG=-1
M  V30 132 F 20.866 -4.3625 0.0 0
M  V30 133 F 20.0 -2.8625 0.0 0
M  V30 134 F 20.866 -3.3625 0.0 0
M  V30 135 F 20.0 -4.8625 0.0 0
M  V30 136 F 19.134 -3.3625 0.0 0
M  V30 END ATOM
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 BEGIN BOND
Line 428: Line 453:
M  V30 143 1 122 120
M  V30 143 1 122 120
M  V30 144 1 76 57
M  V30 144 1 76 57
M  V30 145 1 123 124
M  V30 146 1 124 125
M  V30 147 1 124 126
M  V30 148 1 124 127
M  V30 149 1 124 128
M  V30 150 1 124 129
M  V30 151 1 130 131
M  V30 152 1 131 132
M  V30 153 1 131 133
M  V30 154 1 131 134
M  V30 155 1 131 135
M  V30 156 1 131 136
M  V30 END BOND
M  V30 END BOND
M  V30 END CTAB
M  V30 END CTAB
Line 434: Line 471:


====Investigation====
====Investigation====
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}}
{{#experimentlist: |form=Photocatalytic_CO2_conversion_experiments|name=Results for photocatalytic reduction of CO2}}
 
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Durability test|importFile=}}


==== Sacrificial electron donor ====
====Sacrificial electron donor====
{{#moleculelink:|link=VDFIVJSRRJXMAU-UHFFFAOYSA-N|image=true}}{{#moleculelink:|link=GSEJCLTVZPLZKY-UHFFFAOYSA-N|image=true}}
In this study, the experiments were done with the sacrificial electron donors TEOA ([[Molecule:100507|100507]]) and BIH ([[Molecule:100508|100508]]).
====Additives====
In this study, no additives were tested.[[Category:Publication]]

Latest revision as of 10:37, 11 April 2024


Abstract[edit | edit source]

Summary[edit | edit source]

A photochemical reduction of CO2 to CO or formic acid was shown using the manganese complexes Mn(bpy)(CO)3Br, 100845 or Mn(oMesbpy)(CO)2Br as catalyst in combination with the copper-based photosensitizer [Cu(phen)-(dPPh-Bu)2]2[PF6]2. Turnover numbers (TONs) over 1300 for CO were reached in dimethylacetamide/TEOA for complex 100845. The highest selectivity for CO (96%) was obtained for catalyst Mn(oMesbpy)(CO)2Br while catalyst Mn(bpy)(CO)3Br allowed for the reduction of CO2 to formic acid with a selectivity of 74%. The experiments were conducted under visible-light irradiation (λ = 436 nm) using BIH as sacrificial electron donor (see section SEDs below).

Advances and special progress[edit | edit source]

Employing catalyst 100845, the highest quantum yield for CO2 reduction using abundant elements (57%) at that time was achieved. The authors also demonstrated the stability of their catalyst over a 36 h experiment, where it was shown that BIH was the limiting factor, even in large amounts.

Additional remarks[edit | edit source]

The authors could show that the substituents on the manganese complexes largely influenced the photocatalytic efficiency and product selectivity.

Content of the published article in detail[edit | edit source]

The article contains results for the reduction of CO2 to CO and formic acid under visible-light catalysis using manganese complexes as catalysts. The catalytic system performs best (referring to the TON of CO production) in DMA/TEOA.

Catalyst[edit | edit source]

100751 [Show R-Groups] Mn(oMesbpy)(CO)2Br

Photosensitizer[edit | edit source]

[Cu(phen)-(dPPh-Bu)2]2[PF6]2

Investigation[edit | edit source]

catcat conc [µM]PSPS conc [mM]e-De-D conc [M]solvent A..λexc [nm].TON CO.TON H2TON HCOOH...
1.

Mn(bpy)(CO)3Br

0.05

[Cu(phen)-(dPPh-Bu)2]2[PF6]2

0.25

BIH

0.01

MeCN

436504157
2.

Molecule:100845

0.05

[Cu(phen)-(dPPh-Bu)2]2[PF6]2

0.25

BIH

0.01

MeCN

436164165
3.

Mn(oMesbpy)(CO)2Br

0.05

[Cu(phen)-(dPPh-Bu)2]2[PF6]2

0.25

BIH

0.01

MeCN

4362080.55
catcat conc [µM]PSPS conc [mM]e-De-D conc [M]solvent A..λexc [nm].TON COTON H2TON HCOOH.
1.

Molecule:100845

0.05

[Cu(phen)-(dPPh-Bu)2]2[PF6]2

0.25

BIH

0.1

MeCN

436 nm100468310
Investigation-Name: Durability test

Sacrificial electron donor[edit | edit source]

In this study, the experiments were done with the sacrificial electron donors TEOA (100507) and BIH (100508).

Additives[edit | edit source]

In this study, no additives were tested.

Investigations