An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2: Difference between revisions

From ChemWiki
publication
About
DOI 10.1039/c9cc03943k
Authors Yasmeen Hameed, Patrick Berro, Bulat Gabidullin, Darrin Richeson,
Submitted 16.08.2019
Published online 2019
Licenses http://rsc.li/journals-terms-of-use,
Subjects Materials Chemistry, Metals and Alloys, Surfaces, Coatings and Films, General Chemistry, Ceramics and Composites, Electronic, Optical and Magnetic Materials, Catalysis
Go to literature page
(auto-generated)
 
m (added Publication category)
 
(26 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{#doiinfobox: 10.1039/c9cc03943k}}
{{DOI|doi=10.1039/c9cc03943k}}
[[Category:Photocatalytic CO2 conversion to HCOOH]]
[[Category:Photocatalytic CO2 conversion to HCOOH]]
{{BaseTemplate}}
{{BaseTemplate}}
===Abstract===
====Summary====
A photochemical reduction of CO<sub>2</sub> to formic acid was shown using the rhenium catalyst and sensitizer {{#moleculelink:|link=SQEHJZNRDJMTCB-UHFFFAOYSA-M|image=false|width=300|height=200}} in combination with the supplemental photosensitizer {{#moleculelink:|link=KLDYQWXVZLHTKT-UHFFFAOYSA-N|image=false|width=300|height=200}}. Turnover numbers (TONs) up to 2750 for formic acid were reached in dimethylacetamide. The experiments were conducted under visible-light irradiation (λ = 405 nm) with TEOA (see section SEDs below) as sacrificial electron donor.
====Advances and special progress====
A unprecedented rhenium complex was used as an integrated photosensitizer/catalyst to generate formic acid from CO<sub>2</sub>; other rhenium catalysts only allow for the formation of CO as the reduction product.
====Additional remarks====
The complex {{#moleculelink:|link=SQEHJZNRDJMTCB-UHFFFAOYSA-M|image=false|width=300|height=200}} can act both as a photocatalyst and sensitizer, but its performance is considerably enhanced by the addition of {{#moleculelink:|link=KLDYQWXVZLHTKT-UHFFFAOYSA-N|image=false|width=300|height=200}} as supplemental photosensitizer. The variation of the catalyst concentration also showed a drastic influence on the performance of the catalytic system.
=== Content of the published article in detail ===
The article contains results for the reduction of CO<sub>2</sub> to formic acid under visible-light catalysis using a rhenium complex as a catalyst. The catalytic system performs best (referring to the TON of formic acid production) in dimethylacetamide.
=== Catalyst===
<chemform smiles="C1C=C2C3C=CC=CN=3[Re+]([C-]#[O+])([C-]#[O+])3(N4C=CC=CC=4C4N3=CC=CC=4)N2=CC=1.S(C(F)(F)F)([O-])(=O)=O" inchi="1S/2C10H8N2.CHF3O3S.2CO.Re/c2*1-3-7-11-9(5-1)10-6-2-4-8-12-10;2-1(3,4)8(5,6)7;2*1-2;/h2*1-8H;(H,5,6,7);;;/q;;;;;+1/p-1" inchikey="SQEHJZNRDJMTCB-UHFFFAOYSA-M" height="200px" width="300px" float="none">
  -INDIGO-05192310272D
  0  0  0  0  0  0  0  0  0  0  0 V3000
M  V30 BEGIN CTAB
M  V30 COUNTS 37 41 0 0 0
M  V30 BEGIN ATOM
M  V30 1 C 4.88485 -4.72507 0.0 0
M  V30 2 C 6.61515 -4.72459 0.0 0
M  V30 3 C 5.75164 -4.22497 0.0 0
M  V30 4 N 6.61515 -5.72553 0.0 0
M  V30 5 C 4.88485 -5.73002 0.0 0
M  V30 6 C 5.75382 -6.22503 0.0 0
M  V30 7 C 5.75382 -7.22503 0.0 0
M  V30 8 C 6.6204 -8.7227 0.0 0
M  V30 9 N 6.62066 -7.72506 0.0 0
M  V30 10 C 5.75389 -9.22375 0.0 0
M  V30 11 C 4.88385 -7.72809 0.0 0
M  V30 12 C 4.89031 -8.72814 0.0 0
M  V30 13 C 7.35985 -8.97507 0.0 0
M  V30 14 C 9.09015 -8.97459 0.0 0
M  V30 15 N 8.22664 -8.47497 0.0 0
M  V30 16 C 9.09015 -9.97553 0.0 0
M  V30 17 C 7.35985 -9.98002 0.0 0
M  V30 18 C 8.22882 -10.475 0.0 0
M  V30 19 C 9.95618 -8.47459 0.0 0
M  V30 20 C 10.8199 -6.97528 0.0 0
M  V30 21 N 9.95579 -7.47387 0.0 0
M  V30 22 C 11.6871 -7.47517 0.0 0
M  V30 23 C 10.8268 -8.97648 0.0 0
M  V30 24 C 11.6897 -8.47085 0.0 0
M  V30 25 Re 8.175 -6.775 0.0 0 CHG=1
M  V30 26 C 8.175 -5.3 0.0 0 CHG=-1
M  V30 27 C 9.56603 -5.975 0.0 0 CHG=-1
M  V30 28 O 8.175 -4.3 0.0 0 CHG=1
M  V30 29 O 10.4321 -5.475 0.0 0 CHG=1
M  V30 30 S 14.2464 -6.03834 0.0 0
M  V30 31 O 15.1125 -5.53834 0.0 0
M  V30 32 O 14.7464 -6.90437 0.0 0
M  V30 33 O 13.3804 -6.53834 0.0 0 CHG=-1
M  V30 34 C 13.7464 -5.17232 0.0 0
M  V30 35 F 14.4536 -4.46521 0.0 0
M  V30 36 F 13.2464 -4.30629 0.0 0
M  V30 37 F 12.8804 -5.67232 0.0 0
M  V30 END ATOM
M  V30 BEGIN BOND
M  V30 1 2 3 1
M  V30 2 2 4 2
M  V30 3 1 1 5
M  V30 4 1 2 3
M  V30 5 2 5 6
M  V30 6 1 6 4
M  V30 7 1 6 7
M  V30 8 2 9 7
M  V30 9 2 10 8
M  V30 10 1 7 11
M  V30 11 1 8 9
M  V30 12 2 11 12
M  V30 13 1 12 10
M  V30 14 2 15 13
M  V30 15 2 16 14
M  V30 16 1 13 17
M  V30 17 1 14 15
M  V30 18 2 17 18
M  V30 19 1 18 16
M  V30 20 1 14 19
M  V30 21 2 21 19
M  V30 22 2 22 20
M  V30 23 1 19 23
M  V30 24 1 20 21
M  V30 25 2 23 24
M  V30 26 1 24 22
M  V30 27 10 4 25
M  V30 28 10 9 25
M  V30 29 10 15 25
M  V30 30 10 21 25
M  V30 31 10 25 26
M  V30 32 10 25 27
M  V30 33 3 26 28
M  V30 34 3 27 29
M  V30 35 2 30 31
M  V30 36 2 30 32
M  V30 37 1 30 33
M  V30 38 1 30 34
M  V30 39 1 34 35
M  V30 40 1 34 36
M  V30 41 1 34 37
M  V30 END BOND
M  V30 END CTAB
M  END
</chemform>
===Photosensitizer===
<chemform smiles="" inchi="" inchikey="KLDYQWXVZLHTKT-UHFFFAOYSA-N" height="200px" width="300px" float="none"></chemform>
===Investigations===
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Solvent effect study between DMA DMF and acetonitrile|importFile=}}
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Time profile in DMF|importFile=}}{{#experimentlist: |form=Photocatalytic_CO2_conversion_experiments|name=Study on the concentration of catalyst}}
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Effect of proton donor|importFile=}}
====Sacrificial electron donor====
In this study, the experiments were done with the sacrificial electron donor TEOA ([[Molecule:100507|100507]]).
====Additives====
In this study, the experiments were done with the additives water ({{#moleculelink:|link=XLYOFNOQVPJJNP-UHFFFAOYSA-N|image=false|width=300|height=200}}) and phenol ({{#moleculelink:|link=ISWSIDIOOBJBQZ-UHFFFAOYSA-N|image=false|width=300|height=200}}).[[Category:Publication]]

Latest revision as of 10:37, 11 April 2024


Abstract[edit | edit source]

Summary[edit | edit source]

A photochemical reduction of CO2 to formic acid was shown using the rhenium catalyst and sensitizer [Re(bpy)2(CO)2][OTf] in combination with the supplemental photosensitizer [Ru(bpy)3][PF6]. Turnover numbers (TONs) up to 2750 for formic acid were reached in dimethylacetamide. The experiments were conducted under visible-light irradiation (λ = 405 nm) with TEOA (see section SEDs below) as sacrificial electron donor.

Advances and special progress[edit | edit source]

A unprecedented rhenium complex was used as an integrated photosensitizer/catalyst to generate formic acid from CO2; other rhenium catalysts only allow for the formation of CO as the reduction product.

Additional remarks[edit | edit source]

The complex [Re(bpy)2(CO)2][OTf] can act both as a photocatalyst and sensitizer, but its performance is considerably enhanced by the addition of [Ru(bpy)3][PF6] as supplemental photosensitizer. The variation of the catalyst concentration also showed a drastic influence on the performance of the catalytic system.

Content of the published article in detail[edit | edit source]

The article contains results for the reduction of CO2 to formic acid under visible-light catalysis using a rhenium complex as a catalyst. The catalytic system performs best (referring to the TON of formic acid production) in dimethylacetamide.

Catalyst[edit | edit source]

[Re(bpy)2(CO)2][OTf]

Photosensitizer[edit | edit source]

[Ru(bpy)3][PF6]

Investigations[edit | edit source]

catcat conc [µM]PSPS conc [mM]e-Dsolvent A..λexc [nm].TON H2TON HCOOH.
1.


[Ru(bpy)3][PF6]

0.8

TEOA

DMA

405 nm1.7512.5
2.


[Ru(bpy)3][PF6]

0.8

TEOA

DMF

405 nm215
3.


[Ru(bpy)3][PF6]

0.8

TEOA

MeCN

405 nm1.52.5
4.

[Re(bpy)2(CO)2][OTf]

0.8


TEOA

DMA

405 nm10.3
5.

[Re(bpy)2(CO)2][OTf]

0.8

[Ru(bpy)3][PF6]

0.8

TEOA

DMA

405 nm1.552
6.

[Re(bpy)2(CO)2][OTf]

0.8


TEOA

DMF

405 nm0.810.8
7.

[Re(bpy)2(CO)2][OTf]

0.8

[Ru(bpy)3][PF6]

0.8

TEOA

DMF

405 nm2.866
8.

[Re(bpy)2(CO)2][OTf]

0.8

[Ru(bpy)3][PF6]

0.8

TEOA

MeCN

405 nm
9.

[Re(bpy)2(CO)2][OTf]

0.8

[Ru(bpy)3][PF6]

0.8

TEOA

MeCN

405 nm2.811.5
catcat conc [µM]PSPS conc [mM]e-Dsolvent A..λexc [nm].TON H2TON HCOOH.
1.

[Re(bpy)2(CO)2][OTf]

0.2

[Ru(bpy)3][PF6]

0.2

TEOA

DMF

405 nm00
2.

[Re(bpy)2(CO)2][OTf]

0.2

[Ru(bpy)3][PF6]

0.2

TEOA

DMF

405 nm112.5
3.

[Re(bpy)2(CO)2][OTf]

0.2

[Ru(bpy)3][PF6]

0.2

TEOA

DMF

405 nm2.519.5
4.

[Re(bpy)2(CO)2][OTf]

0.2

[Ru(bpy)3][PF6]

0.2

TEOA

DMF

405 nm4.550.5
5.

[Re(bpy)2(CO)2][OTf]

0.2

[Ru(bpy)3][PF6]

0.2

TEOA

DMF

405 nm659.5
6.

[Re(bpy)2(CO)2][OTf]

0.2

[Ru(bpy)3][PF6]

0.2

TEOA

DMF

405 nm8.569.25
Investigation-Name: Time profile in DMF
Investigation-Name: Study on the concentration of catalyst
Investigation-Name: Effect of proton donor

Sacrificial electron donor[edit | edit source]

In this study, the experiments were done with the sacrificial electron donor TEOA (100507).

Additives[edit | edit source]

In this study, the experiments were done with the additives water (H2O) and phenol (PhOH).

Investigations