An integrated Re(I) photocatalyst and sensitizer that activates the formation of formic acid from reduction of CO2: Difference between revisions
About |
---|
(auto-generated) |
m (added Publication category) |
||
(26 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{DOI|doi=10.1039/c9cc03943k}} | ||
[[Category:Photocatalytic CO2 conversion to HCOOH]] | [[Category:Photocatalytic CO2 conversion to HCOOH]] | ||
{{BaseTemplate}} | {{BaseTemplate}} | ||
===Abstract=== | |||
====Summary==== | |||
A photochemical reduction of CO<sub>2</sub> to formic acid was shown using the rhenium catalyst and sensitizer {{#moleculelink:|link=SQEHJZNRDJMTCB-UHFFFAOYSA-M|image=false|width=300|height=200}} in combination with the supplemental photosensitizer {{#moleculelink:|link=KLDYQWXVZLHTKT-UHFFFAOYSA-N|image=false|width=300|height=200}}. Turnover numbers (TONs) up to 2750 for formic acid were reached in dimethylacetamide. The experiments were conducted under visible-light irradiation (λ = 405 nm) with TEOA (see section SEDs below) as sacrificial electron donor. | |||
====Advances and special progress==== | |||
A unprecedented rhenium complex was used as an integrated photosensitizer/catalyst to generate formic acid from CO<sub>2</sub>; other rhenium catalysts only allow for the formation of CO as the reduction product. | |||
====Additional remarks==== | |||
The complex {{#moleculelink:|link=SQEHJZNRDJMTCB-UHFFFAOYSA-M|image=false|width=300|height=200}} can act both as a photocatalyst and sensitizer, but its performance is considerably enhanced by the addition of {{#moleculelink:|link=KLDYQWXVZLHTKT-UHFFFAOYSA-N|image=false|width=300|height=200}} as supplemental photosensitizer. The variation of the catalyst concentration also showed a drastic influence on the performance of the catalytic system. | |||
=== Content of the published article in detail === | |||
The article contains results for the reduction of CO<sub>2</sub> to formic acid under visible-light catalysis using a rhenium complex as a catalyst. The catalytic system performs best (referring to the TON of formic acid production) in dimethylacetamide. | |||
=== Catalyst=== | |||
<chemform smiles="C1C=C2C3C=CC=CN=3[Re+]([C-]#[O+])([C-]#[O+])3(N4C=CC=CC=4C4N3=CC=CC=4)N2=CC=1.S(C(F)(F)F)([O-])(=O)=O" inchi="1S/2C10H8N2.CHF3O3S.2CO.Re/c2*1-3-7-11-9(5-1)10-6-2-4-8-12-10;2-1(3,4)8(5,6)7;2*1-2;/h2*1-8H;(H,5,6,7);;;/q;;;;;+1/p-1" inchikey="SQEHJZNRDJMTCB-UHFFFAOYSA-M" height="200px" width="300px" float="none"> | |||
-INDIGO-05192310272D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | |||
M V30 BEGIN CTAB | |||
M V30 COUNTS 37 41 0 0 0 | |||
M V30 BEGIN ATOM | |||
M V30 1 C 4.88485 -4.72507 0.0 0 | |||
M V30 2 C 6.61515 -4.72459 0.0 0 | |||
M V30 3 C 5.75164 -4.22497 0.0 0 | |||
M V30 4 N 6.61515 -5.72553 0.0 0 | |||
M V30 5 C 4.88485 -5.73002 0.0 0 | |||
M V30 6 C 5.75382 -6.22503 0.0 0 | |||
M V30 7 C 5.75382 -7.22503 0.0 0 | |||
M V30 8 C 6.6204 -8.7227 0.0 0 | |||
M V30 9 N 6.62066 -7.72506 0.0 0 | |||
M V30 10 C 5.75389 -9.22375 0.0 0 | |||
M V30 11 C 4.88385 -7.72809 0.0 0 | |||
M V30 12 C 4.89031 -8.72814 0.0 0 | |||
M V30 13 C 7.35985 -8.97507 0.0 0 | |||
M V30 14 C 9.09015 -8.97459 0.0 0 | |||
M V30 15 N 8.22664 -8.47497 0.0 0 | |||
M V30 16 C 9.09015 -9.97553 0.0 0 | |||
M V30 17 C 7.35985 -9.98002 0.0 0 | |||
M V30 18 C 8.22882 -10.475 0.0 0 | |||
M V30 19 C 9.95618 -8.47459 0.0 0 | |||
M V30 20 C 10.8199 -6.97528 0.0 0 | |||
M V30 21 N 9.95579 -7.47387 0.0 0 | |||
M V30 22 C 11.6871 -7.47517 0.0 0 | |||
M V30 23 C 10.8268 -8.97648 0.0 0 | |||
M V30 24 C 11.6897 -8.47085 0.0 0 | |||
M V30 25 Re 8.175 -6.775 0.0 0 CHG=1 | |||
M V30 26 C 8.175 -5.3 0.0 0 CHG=-1 | |||
M V30 27 C 9.56603 -5.975 0.0 0 CHG=-1 | |||
M V30 28 O 8.175 -4.3 0.0 0 CHG=1 | |||
M V30 29 O 10.4321 -5.475 0.0 0 CHG=1 | |||
M V30 30 S 14.2464 -6.03834 0.0 0 | |||
M V30 31 O 15.1125 -5.53834 0.0 0 | |||
M V30 32 O 14.7464 -6.90437 0.0 0 | |||
M V30 33 O 13.3804 -6.53834 0.0 0 CHG=-1 | |||
M V30 34 C 13.7464 -5.17232 0.0 0 | |||
M V30 35 F 14.4536 -4.46521 0.0 0 | |||
M V30 36 F 13.2464 -4.30629 0.0 0 | |||
M V30 37 F 12.8804 -5.67232 0.0 0 | |||
M V30 END ATOM | |||
M V30 BEGIN BOND | |||
M V30 1 2 3 1 | |||
M V30 2 2 4 2 | |||
M V30 3 1 1 5 | |||
M V30 4 1 2 3 | |||
M V30 5 2 5 6 | |||
M V30 6 1 6 4 | |||
M V30 7 1 6 7 | |||
M V30 8 2 9 7 | |||
M V30 9 2 10 8 | |||
M V30 10 1 7 11 | |||
M V30 11 1 8 9 | |||
M V30 12 2 11 12 | |||
M V30 13 1 12 10 | |||
M V30 14 2 15 13 | |||
M V30 15 2 16 14 | |||
M V30 16 1 13 17 | |||
M V30 17 1 14 15 | |||
M V30 18 2 17 18 | |||
M V30 19 1 18 16 | |||
M V30 20 1 14 19 | |||
M V30 21 2 21 19 | |||
M V30 22 2 22 20 | |||
M V30 23 1 19 23 | |||
M V30 24 1 20 21 | |||
M V30 25 2 23 24 | |||
M V30 26 1 24 22 | |||
M V30 27 10 4 25 | |||
M V30 28 10 9 25 | |||
M V30 29 10 15 25 | |||
M V30 30 10 21 25 | |||
M V30 31 10 25 26 | |||
M V30 32 10 25 27 | |||
M V30 33 3 26 28 | |||
M V30 34 3 27 29 | |||
M V30 35 2 30 31 | |||
M V30 36 2 30 32 | |||
M V30 37 1 30 33 | |||
M V30 38 1 30 34 | |||
M V30 39 1 34 35 | |||
M V30 40 1 34 36 | |||
M V30 41 1 34 37 | |||
M V30 END BOND | |||
M V30 END CTAB | |||
M END | |||
</chemform> | |||
===Photosensitizer=== | |||
<chemform smiles="" inchi="" inchikey="KLDYQWXVZLHTKT-UHFFFAOYSA-N" height="200px" width="300px" float="none"></chemform> | |||
===Investigations=== | |||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Solvent effect study between DMA DMF and acetonitrile|importFile=}} | |||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Time profile in DMF|importFile=}}{{#experimentlist: |form=Photocatalytic_CO2_conversion_experiments|name=Study on the concentration of catalyst}} | |||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Effect of proton donor|importFile=}} | |||
====Sacrificial electron donor==== | |||
In this study, the experiments were done with the sacrificial electron donor TEOA ([[Molecule:100507|100507]]). | |||
====Additives==== | |||
In this study, the experiments were done with the additives water ({{#moleculelink:|link=XLYOFNOQVPJJNP-UHFFFAOYSA-N|image=false|width=300|height=200}}) and phenol ({{#moleculelink:|link=ISWSIDIOOBJBQZ-UHFFFAOYSA-N|image=false|width=300|height=200}}).[[Category:Publication]] |
Latest revision as of 10:37, 11 April 2024
Abstract[edit | edit source]
Summary[edit | edit source]
A photochemical reduction of CO2 to formic acid was shown using the rhenium catalyst and sensitizer [Re(bpy)2(CO)2][OTf] in combination with the supplemental photosensitizer [Ru(bpy)3][PF6]. Turnover numbers (TONs) up to 2750 for formic acid were reached in dimethylacetamide. The experiments were conducted under visible-light irradiation (λ = 405 nm) with TEOA (see section SEDs below) as sacrificial electron donor.
Advances and special progress[edit | edit source]
A unprecedented rhenium complex was used as an integrated photosensitizer/catalyst to generate formic acid from CO2; other rhenium catalysts only allow for the formation of CO as the reduction product.
Additional remarks[edit | edit source]
The complex [Re(bpy)2(CO)2][OTf] can act both as a photocatalyst and sensitizer, but its performance is considerably enhanced by the addition of [Ru(bpy)3][PF6] as supplemental photosensitizer. The variation of the catalyst concentration also showed a drastic influence on the performance of the catalytic system.
Content of the published article in detail[edit | edit source]
The article contains results for the reduction of CO2 to formic acid under visible-light catalysis using a rhenium complex as a catalyst. The catalytic system performs best (referring to the TON of formic acid production) in dimethylacetamide.
Catalyst[edit | edit source]
Photosensitizer[edit | edit source]
Investigations[edit | edit source]
cat | cat conc [µM] | PS | PS conc [mM] | e-D | solvent A | . | . | λexc [nm] | . | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.8 | 405 nm | 1.75 | 12.5 | |||||||||
2. | 0.8 | 405 nm | 2 | 15 | |||||||||
3. | 0.8 | 405 nm | 1.5 | 2.5 | |||||||||
4. | 0.8 | 405 nm | 10.3 | ||||||||||
5. | 0.8 | 0.8 | 405 nm | 1.5 | 52 | ||||||||
6. | 0.8 | 405 nm | 0.8 | 10.8 | |||||||||
7. | 0.8 | 0.8 | 405 nm | 2.8 | 66 | ||||||||
8. | 0.8 | 0.8 | 405 nm | ||||||||||
9. | 0.8 | 0.8 | 405 nm | 2.8 | 11.5 |
cat | cat conc [µM] | PS | PS conc [mM] | e-D | solvent A | . | . | λexc [nm] | . | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 0.2 | 0.2 | 405 nm | 0 | 0 | ||||||||
2. | 0.2 | 0.2 | 405 nm | 1 | 12.5 | ||||||||
3. | 0.2 | 0.2 | 405 nm | 2.5 | 19.5 | ||||||||
4. | 0.2 | 0.2 | 405 nm | 4.5 | 50.5 | ||||||||
5. | 0.2 | 0.2 | 405 nm | 6 | 59.5 | ||||||||
6. | 0.2 | 0.2 | 405 nm | 8.5 | 69.25 |
cat | cat conc [µM] | PS | PS conc [mM] | e-D | solvent A | . | . | λexc [nm] | . | TON H2 | TON HCOOH | . | . | . | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 1 | 405 | 10.3 | |||||||||||||
2. | 1 | 1 | 405 | 1.5 | 52 | |||||||||||
3. | 0.5 | 1 | 405 | 15 | 115 | |||||||||||
4. | 0.2 | 1 | 405 | 24 | 275 | |||||||||||
5. | 0.1 | 1 | 405 | 38 | 428 | |||||||||||
6. | 0.05 | 1 | 405 | 50 | 535 | |||||||||||
7. | 0.02 | 1 | 405 | 225 | 1480 | |||||||||||
8. | 0.01 | 1 | 405 | 375 | 2750 |
cat | PS | e-D | solvent A | . | . | additives | λexc [nm] | . | TON H2 | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | water | 405 nm | 4.25 | 25 | ||||||||
2. | water | 405 nm | 5.75 | 25.75 | ||||||||
3. | phenol | 405 nm | 5.25 | 27 | ||||||||
4. | phenol | 405 nm | 5.75 | 19 | ||||||||
5. | water | 405 nm | 2 | 12.5 | ||||||||
6. | water | 405 nm | 2.75 | 14.5 | ||||||||
7. | phenol | 405 nm | 1 | 10.25 | ||||||||
8. | phenol | 405 nm | 16.25 | 11.25 | ||||||||
9. | water | 405 nm | 3.25 | 20.5 | ||||||||
10. | water | 405 nm | 3.5 | 24 | ||||||||
11. | phenol | 405 nm | 7.75 | 30 | ||||||||
12. | phenol | 405 nm | 9 | 34.75 |
Sacrificial electron donor[edit | edit source]
In this study, the experiments were done with the sacrificial electron donor TEOA (100507).
Additives[edit | edit source]
In this study, the experiments were done with the additives water (H2O) and phenol (PhOH).
Investigations
- Effect of proton donor (Molecular process, Photocatalytic CO2 conversion experiments)
- Solvent effect study between DMA DMF and acetonitrile (Molecular process, Photocatalytic CO2 conversion experiments)
- Study on the concentration of catalyst (Molecular process, Photocatalytic CO2 conversion experiments)
- Time profile in DMF (Molecular process, Photocatalytic CO2 conversion experiments)