Mn-carbonyl molecular catalysts containing a redox-active phenanthroline-5,6-dione for selective electro- and photoreduction of CO2 to CO or HCOOH: Difference between revisions
About |
---|
(Added molecules) |
No edit summary |
||
(12 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{DOI|doi=10.1016/j.electacta.2017.04.080 }} | ||
[[Category:Photocatalytic CO2 conversion to HCOOH]] | [[Category:Photocatalytic CO2 conversion to HCOOH]] | ||
{{BaseTemplate}} | {{BaseTemplate}} | ||
==== | ===Abstract=== | ||
{{# | ==== Summary==== | ||
A photochemical reduction of CO<sub>2</sub> to CO or formic acid was shown using the manganese complexes {{#moleculelink:|link=KOYXLRUHHLMCRS-UHFFFAOYSA-M|image=false|width=300|height=200}} or {{#moleculelink:|link=JWEFEWAAUDGGIH-UHFFFAOYSA-N|image=false|width=300|height=200}} as catalyst in combination with the ruthenium-based photosensitizer {{#moleculelink:|link=SJFYGUKHUNLZTK-UHFFFAOYSA-L|image=false|width=300|height=200}}, comparing the results to the previously reported catalysts {{#moleculelink:|link=PGQIIBGFONEXSA-UHFFFAOYSA-M|image=false|width=300|height=200}} and {{#moleculelink:|link=ZUZWBGQHMPVNDY-UHFFFAOYSA-M|image=false|width=300|height=200}}. Turnover numbers (TONs) of 58 for formic acid were reached in acetonitrile with complex {{#moleculelink:|link=JWEFEWAAUDGGIH-UHFFFAOYSA-N|image=false|width=300|height=200}}. The experiments were conducted under visible-light irradiation (λ = 480 or 500 nm) using TEOA and BNAH as sacrificial electron donors (see section SEDs below). | |||
====Advances and special progress==== | |||
The efficiency of formic acid generation from CO<sub>2</sub> was improved compared to a previously reported manganese complex. The increased water solubility of one of the novel complexes may enable photo- or electrocatalytic CO<sub>2</sub> reduction in aqueous media. | |||
====Additional remarks==== | |||
In electrochemical CO<sub>2</sub> reduction experiments, a high selectivity for CO formation was observed, contrary to the preferential formation of formic acid in the photocatalytic CO<sub>2</sub> reduction. | |||
==== Catalyst ==== | ===Content of the published article in detail=== | ||
<chemform smiles="C1C=CN2[Mn+]([Br-])(C#O)(C#O)(C#O)N3=CC=CC4C(=O)C(=O)C=1C=2C=43" inchi="1S/C12H6N2O2. | The article contains results for the reduction of CO<sub>2</sub> to formic acid under visible-light catalysis using manganese complexes as catalysts. The catalytic system performs best (referring to the TON of formic acid production) in acetonitrile using catalyst {{#moleculelink:|link=JWEFEWAAUDGGIH-UHFFFAOYSA-N|image=false|width=300|height=200}}. | ||
-INDIGO- | ==== Catalyst==== | ||
<chemform smiles="C1C=CN2[Mn+]([Br-])([C-]#[O+])([C-]#[O+])([C-]#[O+])N3=CC=CC4C(=O)C(=O)C=1C=2C=43" inchikey="KOYXLRUHHLMCRS-UHFFFAOYSA-M" inchi="1S/C12H6N2O2.3CO.BrH.Mn/c15-11-7-3-1-5-13-9(7)10-8(12(11)16)4-2-6-14-10;3*1-2;;/h1-6H;;;;1H;/q;;;;;+1/p-1" float="none" width="200" height="200"> | |||
-INDIGO-01102415542D | |||
0 0 0 0 0 0 0 0 0 0 0 V3000 | 0 0 0 0 0 0 0 0 0 0 0 V3000 | ||
Line 31: | Line 39: | ||
M V30 16 O 9.39805 -1.2925 0.0 0 | M V30 16 O 9.39805 -1.2925 0.0 0 | ||
M V30 17 Mn 8.375 -5.525 0.0 0 CHG=1 | M V30 17 Mn 8.375 -5.525 0.0 0 CHG=1 | ||
M V30 18 C 7.50897 -6.025 0.0 0 | M V30 18 C 7.50897 -6.025 0.0 0 CHG=-1 | ||
M V30 19 C 9.24102 -6.025 0.0 0 | M V30 19 C 9.24102 -6.025 0.0 0 CHG=-1 | ||
M V30 20 C 8.375 -6.525 0.0 0 | M V30 20 C 8.375 -6.525 0.0 0 CHG=-1 | ||
M V30 21 Br 8.375 -4.525 0.0 0 CHG=-1 | M V30 21 Br 8.375 -4.525 0.0 0 CHG=-1 | ||
M V30 22 O 6.64295 -6.525 0.0 0 | M V30 22 O 6.64295 -6.525 0.0 0 CHG=1 | ||
M V30 23 O 8.375 -7.525 0.0 0 | M V30 23 O 8.375 -7.525 0.0 0 CHG=1 | ||
M V30 24 O 10.1071 -6.525 0.0 0 | M V30 24 O 10.1071 -6.525 0.0 0 CHG=1 | ||
M V30 END ATOM | M V30 END ATOM | ||
M V30 BEGIN BOND | M V30 BEGIN BOND | ||
Line 70: | Line 78: | ||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
</chemform><chemform smiles="C12N3[Mn+](C#O)(C#O)(C#O)(N#CC)N4=CC=CC(C(=O)C(=O)C=1C=CC=3)=C24" inchi="1S/C12H6N2O2.C2H3N. | </chemform><chemform smiles="C12N3[Mn+]([C-]#[O+])([C-]#[O+])([C-]#[O+])(N#CC)N4=CC=CC(C(=O)C(=O)C=1C=CC=3)=C24.F[P-](F)(F)(F)(F)F" inchikey="JWEFEWAAUDGGIH-UHFFFAOYSA-N" inchi="1S/C12H6N2O2.C2H3N.3CO.F6P.Mn/c15-11-7-3-1-5-13-9(7)10-8(12(11)16)4-2-6-14-10;1-2-3;3*1-2;1-7(2,3,4,5)6;/h1-6H;1H3;;;;;/q;;;;;-1;+1" float="none" width="200" height="200"> | ||
-INDIGO- | -INDIGO-01102415522D | ||
0 0 0 0 0 0 0 0 0 0 0 V3000 | 0 0 0 0 0 0 0 0 0 0 0 V3000 | ||
M V30 BEGIN CTAB | M V30 BEGIN CTAB | ||
M V30 COUNTS | M V30 COUNTS 33 35 0 0 0 | ||
M V30 BEGIN ATOM | M V30 BEGIN ATOM | ||
M V30 1 C 8.22511 -3.34193 0.0 0 | M V30 1 C 8.22511 -3.34193 0.0 0 | ||
Line 95: | Line 103: | ||
M V30 17 Mn 8.75 -4.975 0.0 0 CHG=1 | M V30 17 Mn 8.75 -4.975 0.0 0 CHG=1 | ||
M V30 18 N 10.8 -4.975 0.0 0 | M V30 18 N 10.8 -4.975 0.0 0 | ||
M V30 19 C 7.76789 -5.55711 0.0 0 | M V30 19 C 7.76789 -5.55711 0.0 0 CHG=-1 | ||
M V30 20 C 9.78211 -5.53211 0.0 0 | M V30 20 C 9.78211 -5.53211 0.0 0 CHG=-1 | ||
M V30 21 C 8.75 -5.975 0.0 0 | M V30 21 C 8.75 -5.975 0.0 0 CHG=-1 | ||
M V30 22 O 6.90187 -6.05711 0.0 0 | M V30 22 O 6.90187 -6.05711 0.0 0 CHG=1 | ||
M V30 23 O 8.75 -6.975 0.0 0 | M V30 23 O 8.75 -6.975 0.0 0 CHG=1 | ||
M V30 24 O 10.6481 -6.03211 0.0 0 | M V30 24 O 10.6481 -6.03211 0.0 0 CHG=1 | ||
M V30 25 C 11.5909 -4.96618 0.0 0 | M V30 25 C 11.5909 -4.96618 0.0 0 | ||
M V30 26 C 12.3319 -4.95736 0.0 0 | M V30 26 C 12.3319 -4.95736 0.0 0 | ||
M V30 27 F 12.617 -2.25 0.0 0 | |||
M V30 28 P 13.483 -1.75 0.0 0 CHG=-1 | |||
M V30 29 F 14.349 -2.25 0.0 0 | |||
M V30 30 F 13.483 -0.75 0.0 0 | |||
M V30 31 F 14.349 -1.25 0.0 0 | |||
M V30 32 F 12.617 -1.25 0.0 0 | |||
M V30 33 F 13.483 -2.75 0.0 0 | |||
M V30 END ATOM | M V30 END ATOM | ||
M V30 BEGIN BOND | M V30 BEGIN BOND | ||
Line 134: | Line 149: | ||
M V30 28 3 18 25 | M V30 28 3 18 25 | ||
M V30 29 1 25 26 | M V30 29 1 25 26 | ||
M V30 30 1 27 28 | |||
M V30 31 1 28 29 | |||
M V30 32 1 28 30 | |||
M V30 33 1 28 31 | |||
M V30 34 1 28 32 | |||
M V30 35 1 28 33 | |||
M V30 END BOND | M V30 END BOND | ||
M V30 END CTAB | M V30 END CTAB | ||
Line 196: | Line 217: | ||
M V30 END CTAB | M V30 END CTAB | ||
M END | M END | ||
</chemform> | </chemform>{{#moleculelink:|link=ZUZWBGQHMPVNDY-UHFFFAOYSA-M|image=true}} | ||
====Photosensitizer ==== | |||
<chemform smiles="" inchi="" inchikey="SJFYGUKHUNLZTK-UHFFFAOYSA-L" height="200px" width="300px" float="none"></chemform> | |||
==== | ====Investigation==== | ||
{{#experimentlist:|form=Photocatalytic_CO2_conversion_experiments|name=Table 1}} | |||
==== Sacrificial electron donor ==== | ====Sacrificial electron donor==== | ||
In this study, the experiments were done with the sacrificial electron donors TEOA ([[Molecule:100507|100507]]) and BNAH ({{#moleculelink:|link=CMNUYDSETOTBDE-UHFFFAOYSA-N|image=false|width=300|height=200}}). | |||
====Additives==== | |||
In this study, ascorbic acid was tested as an additive and control experiments under argon atmosphere were performed.[[Category:Publication]] |
Latest revision as of 13:48, 23 May 2024
Abstract[edit | edit source]
Summary[edit | edit source]
A photochemical reduction of CO2 to CO or formic acid was shown using the manganese complexes Mn(phdk)(CO)3Br or Mn(phdk)(CO)3(MeCN) as catalyst in combination with the ruthenium-based photosensitizer Ru(bpy)3Cl2, comparing the results to the previously reported catalysts Mn(phen)(CO)3Br and Mn(bpy)(CO)3Br. Turnover numbers (TONs) of 58 for formic acid were reached in acetonitrile with complex Mn(phdk)(CO)3(MeCN). The experiments were conducted under visible-light irradiation (λ = 480 or 500 nm) using TEOA and BNAH as sacrificial electron donors (see section SEDs below).
Advances and special progress[edit | edit source]
The efficiency of formic acid generation from CO2 was improved compared to a previously reported manganese complex. The increased water solubility of one of the novel complexes may enable photo- or electrocatalytic CO2 reduction in aqueous media.
Additional remarks[edit | edit source]
In electrochemical CO2 reduction experiments, a high selectivity for CO formation was observed, contrary to the preferential formation of formic acid in the photocatalytic CO2 reduction.
Content of the published article in detail[edit | edit source]
The article contains results for the reduction of CO2 to formic acid under visible-light catalysis using manganese complexes as catalysts. The catalytic system performs best (referring to the TON of formic acid production) in acetonitrile using catalyst Mn(phdk)(CO)3(MeCN).
Catalyst[edit | edit source]
Mn(phdk)(CO)3Br Mn(phdk)(CO)3(MeCN) Mn(phen)(CO)3Br Mn(bpy)(CO)3Br
Photosensitizer[edit | edit source]
Investigation[edit | edit source]
cat | cat conc [µM] | PS | PS conc [mM] | e-D | e-D conc [M] | solvent A | . | . | . | additives | λexc [nm] | . | TON CO | TON HCOOH | . | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 100 | 0.1 | 480 | 8 | 52 | |||||||||||
2. | 100 | 0.1 | 480 | 15 | 58 | |||||||||||
3. | 100 | 0.1 | 480 | 9 | 48 | |||||||||||
4. | 100 | 0.1 | 480 | 47 | 15 | |||||||||||
5. | 100 | 0.1 | 500 | 7 | 40 | |||||||||||
6. | 100 | 0.1 | 457 | 7 | 34 | |||||||||||
7. | 2 | 100 | 0.1 | 480 | 5 | 18 | ||||||||||
8. | 200 | 0.1 | 480 | 8 | 52 | |||||||||||
9. | 100 | 0.1 | 480 | |||||||||||||
10. | 100 | 0.1 | 500 | |||||||||||||
11. | 100 | 480 | 3 | |||||||||||||
12. | 0.1 | 500 | ||||||||||||||
13. | 100 | 0.1 | Argon gas | 480 | ||||||||||||
14. | 100 | 0.1 | 480 | |||||||||||||
15. | 100 | 0.1 | 480 | |||||||||||||
16. | 100 | 0.1 | 480 | 21 | 22 | |||||||||||
17. | 100 | 0.1 | 480 | 2 | ||||||||||||
18. | 100 | 480 | 9 | 13 | ||||||||||||
19. | 100 | 0.1 | 480 | 17 | 4 | |||||||||||
20. | 100 | 0.1 | 480 | 6 | 39 | |||||||||||
21. | 100 | ascorbic acid/NaA | 480 | |||||||||||||
22. | 100 | ascorbic acid/NaA | 500 |
Sacrificial electron donor[edit | edit source]
In this study, the experiments were done with the sacrificial electron donors TEOA (100507) and BNAH (BNAH).
Additives[edit | edit source]
In this study, ascorbic acid was tested as an additive and control experiments under argon atmosphere were performed.
Investigations
- Table 1 (Molecular process, Photocatalytic CO2 conversion experiments)